Absolute structure determination of Berkecoumarin by X-ray and electron diffraction
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P20 GM103546
NIGMS NIH HHS - United States
P30 GM140963
NIGMS NIH HHS - United States
U24 GM129539
NIGMS NIH HHS - United States
U24 GM129539
NIH HHS - United States
PubMed
38598330
PubMed Central
PMC11068058
DOI
10.1107/s2053229624003061
PII: S2053229624003061
Knihovny.cz E-zdroje
- Klíčová slova
- Berkecoumarin, absolute structure determination, chromenone, coumarin, crystal structure, dynamical refinement, electron diffraction, microED, natural product,
- Publikační typ
- časopisecké články MeSH
X-ray and electron diffraction methods independently identify the S-enantiomer of Berkecoumarin [systematic name: (S)-8-hydroxy-3-(2-hydroxypropyl)-6-methoxy-2H-chromen-2-one]. Isolated from Berkeley Pit Lake Penicillium sp., Berkecoumarin is a natural product with a light-atom composition (C13H14O5) that challenges in-house absolute structure determination by anomalous scattering. This study further demonstrates the utility of dynamical refinement of electron-diffraction data for absolute structure determination.
Chemistry and Biochemistry University of Montana 32 Campus Drive Missoula Montana 59812 USA
Institute of Physics of the CAS Na Slovance 1999 2 Prague 19200 Czech Republic
Zobrazit více v PubMed
Ayer, W. A. & Racok, J. S. (1990). Can. J. Chem. 68, 2085–2094.
Brázda, P., Palatinus, L. & Babor, M. (2019). Science, 364, 667–669. PubMed
Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2021). APEX4. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, A., Negro, C., Bruhn, J. F., Rice, W. J., Dallakyan, S., Eng, E. T., Waterman, D. G., Potter, C. S. & Carragher, B. (2021). Protein Sci. 30, 136–150. PubMed PMC
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
Fargher, H. A., Sherbow, T. J., Haley, M. M., Johnson, D. W. & Pluth, M. D. (2022). Chem. Soc. Rev. 51, 1454–1469. PubMed PMC
Finefield, J. M., Sherman, D. H., Kreitman, M. & Williams, R. M. (2012). Angew. Chem. Int. Ed. 51, 4802–4836. PubMed PMC
Flack, H. D. (2008). Acta Chim. Slov. 55, 689–691.
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.
Flack, H. D. & Bernardinelli, G. (2008). Chirality, 20, 681–690. PubMed
Flack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257–265. PubMed
Gammons, C. H. & Duaime, T. E. (2006). Mine Water Environ. 25, 76–85.
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. PubMed PMC
Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem. 15, 848–855. PubMed PMC
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. PubMed PMC
Mitman, G. (1999). Mine Waste Technology Program Activity IV, Project 10. US EPA National Risk Management Lab. IAG # DW89938513-01-0-4.
Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. & Klementová, M. (2019). Acta Cryst. B75, 512–522. PubMed
Palatinus, L., Corrêa, C. A., Steciuk, G., Jacob, D., Roussel, P., Boullay, P., Klementová, M., Gemmi, M., Kopeček, J., Domeneghetti, M. C., Cámara, F. & Petříček, V. (2015). Acta Cryst. B71, 740–751. PubMed
Palatinus, L., Petříček, V. & Corrêa, C. A. (2015). Acta Cryst. A71, 235–244. PubMed
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. PubMed PMC
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Stierle, A. A., Stierle, D. B. & Kemp, K. (2004). J. Nat. Prod. 67, 1392–1395. PubMed
Stierle, A., Stierle, D., Newman, D. J., Cragg, G. M. & Grothaus, P. G. (2017). Chemical Biology of Natural Products, pp. 333–385. Boca Raton: CRC Press.