MicroRNAs (miRNAs) have emerged as important regulators of gene expression in various biological processes, including cancer. miR-182-5p has gained attention for its potential implications in gynecologic cancers, including breast, ovarian, endometrial, and cervical cancers. miR-182-5p dysregulation has been associated with multiple facets of tumor biology in gynecologic cancers, including tumor initiation, progression, metastasis, and therapeutic response. Studies have highlighted its involvement in key signaling pathways and cellular processes that contribute to cancer development and progression. In addition, miR-182-5p has shown potential as a diagnostic and prognostic biomarker, with studies demonstrating its correlation with clinicopathological features and patient outcomes. Furthermore, the therapeutic potential of miR-182-5p is being explored in gynecologic cancers. Strategies such as miRNA mimics or inhibitors targeting miR-182-5p have shown promise in preclinical and early clinical studies. These approaches aim to modulate miR-182-5p expression, restoring normal cellular functions and potentially enhancing treatment responses. Understanding the biologic and clinical implications of miR-182-5p in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized medicine approaches. Further investigations are needed to unravel the specific target genes and pathways regulated by miR-182-5p. It is important to consider the emerging biologic and clinical implications of miR-182-5p in gynecologic cancers.
- MeSH
- Humans MeSH
- MicroRNAs * genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Genital Neoplasms, Female * genetics therapy MeSH
- Prognosis MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
PURPOSE: TACE induces variable systemic effects by producing factors that promote inflammation, oncogenesis, and angiogenesis. Here we compare concentrations of microRNAs (miR-21, miR-210 and miR-34a) and vascular endothelial growth factor (VEGF) in hepatocellular carcinoma (HCC) patients undergoing TACE with degradable (DSM) and nondegradable (DEB) particles and potential use of these biomarker changes for prediction of patient outcomes. MATERIALS AND METHODS: Overall, 52 patients with HCC treated with DSM TACE (24 patients) and DEB TACE (28 patients) were included in this prospective study. Concentrations of studied biomarkers were measured from blood plasma preprocedurally, immediately (< 90 min) postprocedurally, and 24-h after TACE. Levels were compared between DSM and DEB TACE and correlated with treatment response six and 12 months after the first TACE. RESULTS: Both DSM and DEB TACE elevated plasma levels of miR-21, miR-34a, and miR-210 at 24 h post-procedure compared to baseline levels (FC 1.25-4.0). MiR-34a elevation immediately after TACE was significantly associated with nonprogressive disease compared to those with progressive disease at both six months (FCa: p = 0.014) and 12 months (FCa: p = 0.029) post-TACE. No significant biomarker changes were found between the embolization particle groups. However, VEGF levels showed a decrease only in the DSM TACE group (FC24: p = < 0.001). CONCLUSION: Embolization particle type did not significantly impact miRNA or VEGF changes post-TACE. However, miR-34a elevation immediately after the procedure predicts better patient outcome and may prove useful as a biomarkers for the monitoring of clinical outcomes. LEVEL OF EVIDENCE: Level 3 Prospective cohort study.
- MeSH
- Biomarkers blood MeSH
- Chemoembolization, Therapeutic * methods MeSH
- Carcinoma, Hepatocellular * therapy blood genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- MicroRNAs * blood MeSH
- Biomarkers, Tumor * blood MeSH
- Liver Neoplasms * therapy genetics blood MeSH
- Prospective Studies MeSH
- Aged MeSH
- Vascular Endothelial Growth Factor A * blood MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Cell cycle progression and leukemia development are tightly regulated processes in which even a small imbalance in the expression of cell cycle regulatory molecules and microRNAs (miRNAs) can lead to an increased risk of cancer/leukemia development. Here, we focus on the study of a ubiquitous, multifunctional, and oncogenic miRNA-hsa-miR-155-5p (miR-155, MIR155HG), which is overexpressed in malignancies including chronic lymphocytic leukemia (CLL). Nonetheless, the precise mechanism of how miR-155 regulates the cell cycle in leukemic cells remains the subject of extensive research. METHODS: We edited the CLL cell line MEC-1 by CRISPR/Cas9 to introduce a short deletion within the MIR155HG gene. To describe changes at the transcriptome and miRNome level in miR-155-deficient cells, we performed mRNA-seq/miRNA-seq and validated changes by qRT-PCR. Flow cytometry was used to measure cell cycle kinetics. A WST-1 assay, hemocytometer, and Annexin V/PI staining assessed cell viability and proliferation. RESULTS: The limited but phenotypically robust miR-155 modification impaired cell proliferation, cell cycle, and cell ploidy. This was accompanied by overexpression of the negative cell cycle regulator p21/CDKN1A and Cyclin D1 (CCND1). We confirmed the overexpression of canonical miR-155 targets such as PU.1, FOS, SHIP-1, TP53INP1 and revealed new potential targets (FCRL5, ISG15, and MX1). CONCLUSIONS: We demonstrate that miR-155 deficiency impairs cell proliferation, cell cycle, transcriptome, and miRNome via deregulation of the MIR155HG/TP53INP1/CDKN1A/CCND1 axis. Our CLL model is valuable for further studies to manipulate miRNA levels to revert highly aggressive leukemic cells to nearly benign or non-leukemic types.
- MeSH
- Leukemia, Lymphocytic, Chronic, B-Cell * genetics pathology MeSH
- Cyclin D1 genetics metabolism MeSH
- Cyclin-Dependent Kinase Inhibitor p21 * genetics metabolism MeSH
- Cell Cycle Checkpoints * genetics MeSH
- Humans MeSH
- MicroRNAs * genetics metabolism MeSH
- Cell Line, Tumor MeSH
- Cell Proliferation genetics MeSH
- Heat-Shock Proteins MeSH
- Gene Expression Regulation, Leukemic MeSH
- Carrier Proteins genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Acute kidney injury (AKI) due to gentamicin nephrotoxicity is a significant concern in clinical medicine, particularly in patients receiving prolonged or high-dose gentamicin therapy. Gentamicin is an aminoglycoside antibiotic frequently used in the treatment of a range of bacterial infections. However, its use is associated with nephrotoxicity which can manifest as AKI. Due to this, it is crucial to diagnose promptly and manage treatment effectively. Ongoing studies are therefore focusing on non-protein-coding RNAs as potential biomarkers for AKI. Numerous microRNAs (miRNAs) have been implicated in gentamicin-induced nephrotoxicity and AKI. They participate in pathways associated with inflammation, cell death, and oxidative stress and each of these factors play critical roles in the development of gentamicin-induced kidney injury. Research studies have demonstrated changes in the expression levels of these miRNAs in response to gentamicin exposure both in vitro and in in vivo models, as well as in human clinical trials involving patients receiving gentamicin therapy. The dysregulation of these miRNAs correlates with the severity of kidney injury and may serve as sensitive biomarkers for early detection and monitoring of AKI induced by gentamicin.
- MeSH
- Acute Kidney Injury * chemically induced diagnosis MeSH
- Anti-Bacterial Agents * adverse effects MeSH
- Biomarkers * MeSH
- Gentamicins * adverse effects MeSH
- Humans MeSH
- MicroRNAs * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Drug Resistance, Bacterial MeSH
- Phytochemicals * pharmacology chemistry MeSH
- Humans MeSH
- Foodborne Diseases microbiology prevention & control drug therapy MeSH
- Salmonella enterica * drug effects MeSH
- Salmonella Infections * microbiology drug therapy MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
INTRODUCTION: Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS: This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS: Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION: We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice. INTRODUCTION: Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS: This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS: Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION: We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice.
- MeSH
- Adult MeSH
- Neoplasm Invasiveness MeSH
- Middle Aged MeSH
- Humans MeSH
- Lymphatic Metastasis MeSH
- MicroRNAs * genetics metabolism MeSH
- Biomarkers, Tumor * genetics metabolism MeSH
- Breast Neoplasms * pathology genetics metabolism mortality MeSH
- Gene Expression Regulation, Neoplastic * MeSH
- RNA, Small Nuclear * genetics metabolism MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Male infertility is a multifactorial condition contributing to approximately 50% of all cases of couple infertility. In recent years, significant advances have been made in both diagnostics and treatment. This review summarizes key developments from 2019 to 2024 with direct relevance to routine clinical practice in Czech urology and andrology. Particular attention is paid to the updated semen analysis standards (World Health Organisation 6th edition, 2021), sperm DNA fragmentation testing, genetic evaluation (karyotyping, Y chromosome microdeletions, and exome sequencing), surgical management of varicocele, and sperm retrieval techniques for azoospermia, including microdissection testicular sperm extraction (micro-TESE). The article also discusses pharmacological options (gonadotropins, selective estrogen receptor modulators, antioxidants), the impact of lifestyle factors, and the importance of interdisciplinary collaboration with assisted reproduction centers. Future perspectives, including the role of preventive strategies in male reproductive health, are also addressed. The aim is to provide a comprehensive and clinically applicable overview of current recommendations and therapeutic approaches in andrology, with a focus on their implementation in the Czech urological setting.
- MeSH
- Semen Analysis methods MeSH
- Antioxidants pharmacology therapeutic use MeSH
- Reproductive Techniques, Assisted MeSH
- Genetic Testing methods MeSH
- Gonadotropins therapeutic use MeSH
- Humans MeSH
- Infertility, Male * diagnosis etiology therapy MeSH
- Sperm Retrieval MeSH
- Selective Estrogen Receptor Modulators pharmacology therapeutic use MeSH
- Varicocele surgery MeSH
- Life Style MeSH
- Check Tag
- Humans MeSH
- Publication type
- Systematic Review MeSH
Intracranial human brain recordings from multiple implanted depth electrodes using stereo-EEG (sEEG) technology for seizure localization provide unique local field potential signals (LFP) sampled with standard macro- and special micro-electrode contacts. Over one hundred macro- and micro-contact LFP signals localized in particular brain regions were recorded from each sEEG monitoring case as patients engaged in an automated battery of verbal memory and non-verbal gaze movement tasks. Subject eye and vocal responses in both visual and auditory task versions were automatically detected in Polish, Czech, and Slovak languages with accurate timing of the correct and incorrect verbal responses using our web-based transcription tool. The behavioral events, LFP and pupillometric signals were synchronized and stored in a standard BIDS data structure with corresponding metadata. Each dataset contains recordings from at least one battery task performed over at least one day. The same set of 180 common nouns in the three languages was used across different battery tasks and recording days to enable the analysis of selective responses to specific word stimuli.
- MeSH
- Electroencephalography MeSH
- Language MeSH
- Cognition * MeSH
- Humans MeSH
- Brain * physiology MeSH
- Eye Movements MeSH
- Eye-Tracking Technology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH
INTRODUCTION: Central nervous system (CNS) involvement in diffuse large B-cell lymphoma (DLBCL) is a rare but serious condition requiring accurate diagnostics. Cerebrospinal fluid (CSF) analysis plays a crucial role, particularly in cases where biopsy is not feasible, and imaging is inconclusive. AREAS COVERED: Chemical markers have limitations, particularly in low-cellularity samples. Novel molecular techniques, including circulating tumor DNA (ctDNA) analysis and microRNAs (miRNAs), are gaining prominence for their ability to detect gene mutations at diagnosis and monitor minimal residual disease during follow-up. The sensitivity and specificity of genetic mutations, particularly MYD88 L265P, in combination with interleukin-10 (IL-10) levels, are discussed. The literature search methodology involved reviewing relevant studies and clinical data.This review examines both traditional and emerging methods for CSF analysis in diagnosing CNS involvement in DLBCL. Conventional approaches such as cytomorphology, flow cytometry, and biochemical markers have limitations, particularly in low-cellularity samples. Novel molecular techniques, including ctDNA analysis and miRNAs, are gaining prominence for their ability to detect gene mutations at diagnosis and monitor minimal residual disease during follow-up. The sensitivity and specificity of genetic mutations, particularly MYD88 L265P, in combination with interleukin-10 (IL-10) levels, are discussed. The literature search methodology involved reviewing relevant studies and clinical data. EXPERT OPINION: Advancements in CSF biomarker analysis are improving the diagnosis of CNS lymphoma, aiding early detection and personalized treatment approaches. However, further research and broader clinical validation are necessary for their routine implementation.
- MeSH
- Circulating Tumor DNA cerebrospinal fluid genetics MeSH
- Molecular Diagnostic Techniques methods MeSH
- Lymphoma, Large B-Cell, Diffuse * diagnosis cerebrospinal fluid genetics pathology MeSH
- Interleukin-10 genetics cerebrospinal fluid MeSH
- Humans MeSH
- Meningeal Neoplasms * diagnosis cerebrospinal fluid genetics MeSH
- MicroRNAs genetics cerebrospinal fluid MeSH
- Mutation MeSH
- Myeloid Differentiation Factor 88 genetics MeSH
- Biomarkers, Tumor * cerebrospinal fluid genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Dysregulation of extracellular matrix (ECM) homeostasis plays a pivotal role in the accelerated degradation of cartilage, presenting a notable challenge for effective osteoarthritis (OA) treatment and cartilage regeneration. In this study, we introduced an injectable hydrogel based on streamlined-zinc oxide (ZnO), which is responsive to matrix metallopeptidase (MMP), for the delivery of miR-17-5p. This approach aimed to address cartilage damage by regulating ECM homeostasis. The ZnO/miR-17-5p composite functions by releasing zinc ions to attract native bone marrow mesenchymal stem cells, thereby fostering ECM synthesis through the proliferation of new chondrocytes. Concurrently, sustained delivery of miR-17-5p targets enzymes responsible for matrix degradation, thereby mitigating the catabolic process. Notably, the unique structure of the streamlined ZnO nanoparticles is distinct from their conventional spherical counterparts, which not only optimizes the rheological and mechanical properties of the hydrogels, but also enhances the efficiency of miR-17-5p transfection. Our male rat model demonstrated that the combination of streamlined ZnO, MMP-responsive hydrogels, and miRNA-based therapy effectively managed the equilibrium between catabolism and anabolism within the ECM, presenting a fresh perspective in the realm of OA treatment.
- MeSH
- Cell Differentiation * drug effects MeSH
- Chondrocytes metabolism drug effects cytology MeSH
- Cartilage * drug effects MeSH
- Extracellular Matrix * metabolism drug effects MeSH
- Homeostasis drug effects MeSH
- Hydrogels * chemistry MeSH
- Cartilage, Articular drug effects MeSH
- Rats MeSH
- Matrix Metalloproteinases metabolism MeSH
- Mesenchymal Stem Cells cytology drug effects metabolism MeSH
- MicroRNAs genetics metabolism MeSH
- Osteoarthritis therapy pathology MeSH
- Zinc Oxide chemistry MeSH
- Rats, Sprague-Dawley MeSH
- Regeneration MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH