Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II): discovery of the first ruthenium tetrapyrrole cis-dicarbonyl complex by X-ray and electron diffraction
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
S10 OD026896
NIH HHS - United States
S10 OD026896A
the National Institutes of Health
DESC-0001234
the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences EPSCoR and Catalysis programs
21-05926X
the Czech Science Foundation
PubMed
39120499
PubMed Central
PMC11371002
DOI
10.1107/s2053229624007083
PII: S2053229624007083
Knihovny.cz E-zdroje
- Klíčová slova
- biladiene, crystal structure, electron diffraction, reduction photocatalyst, ruthenium, tetrapyrrole,
- Publikační typ
- časopisecké články MeSH
Dicarbonyl[10,10-dimethyl-5,15-bis(pentafluorophenyl)biladiene]ruthenium(II), [Ru(C33H16F10N4)(CO)2] or Ru(CO)2[DMBil1], is the first reported ruthenium(II) cis-dicarbonyl tetrapyrrole complex. The neutral complex sports two carbonyls and an oligotetrapyrrolic biladiene ligand. Notably, the biladiene adopts a coordination geometry that is well distorted from square planar and much more closely approximates a seesaw arrangement. Accordingly, Ru(CO)2[DMBil1] is not only the first ruthenium cis-dicarbonyl with a tetrapyrrole ligand, but also the first metal biladiene complex in which the tetrapyrrole does not adopt a (pseudo-)square-planar coordination geometry. Ru(CO)2[DMBil1] is weakly luminescent, displaying λem = 552 nm upon excitation at λex = 500 nm, supports two reversible 1 e- reductions at -1.45 and -1.73 V (versus Fc+/Fc), and has significant absorption features at 481 and 531 nm, suggesting suitability for photocatalytic and photosensitization applications. While the structure of Ru(CO)2[DMBil1] was initially determined by X-ray diffraction, a traditionally acceptable quality structure could not be obtained (despite multiple attempts) because of consistently poor crystal quality. An independent structure obtained from electron diffraction experiments corroborates the structure of this unusual biladiene complex.
Department of Chemistry and Biochemistry University of Delaware Newark Delaware 19716 USA
Zobrazit více v PubMed
Andrade, G. A., Pistner, A. J., Yap, G. P. A., Lutterman, D. A. & Rosenthal, J. (2013). ACS Catal.3, 1685–1692. PubMed PMC
Bruce, A. M., Weyburne, E. S., Engle, J. T., Ziegler, C. J. & Geier, G. R. (2014). J. Org. Chem.79, 5664–5672. PubMed
Bruker (2016). APEX3, SADABS, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst.48, 306–309.
Cai, Q., Tran, L. K., Qiu, T., Eddy, J. W., Pham, T.-N., Yap, G. P. A. & Rosenthal, J. (2022). Inorg. Chem.61, 5442–5451. PubMed
Clark, M. L., Cheung, P. L., Lessio, M., Carter, E. A. & Kubiak, C. P. (2018). ACS Catal.8, 2021–2029.
Concepcion, J. J., Jurss, J. W., Brennaman, M. K., Hoertz, P. G., Patrocinio, A. O. T., Murakami Iha, N. Y., Templeton, J. L. & Meyer, T. J. (2009). Acc. Chem. Res.42, 1954–1965. PubMed
Cullen, D., Meyer, E., Srivastava, T. S. & Tsutsui, M. (1972). J. Chem. Soc. Chem. Commun. pp. 584–585.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
Eaton, G. R. & Eaton, S. S. (1975). J. Am. Chem. Soc.97, 235–236.
Eldico (2023). Eldix. Version 4.3.1. Eldico Scientific AG, Villigen, Switzerland.
Filipovich, G. & Tiers, G. V. D. (1959). J. Phys. Chem.63, 761–763.
Foroutan-Nejad, C., Larsen, S., Conradie, J. & Ghosh, A. (2018). Sci. Rep.8, 11952. PubMed PMC
Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E. & Goldberg, K. I. (2010). Organometallics, 29, 2176–2179.
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed.53, 662–671. PubMed
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. PubMed PMC
Hawecker, J., Lehn, J. M. & Ziessel, R. (1983). J. Chem. Soc. Chem. Commun. pp. 536–538.
Hoffmann, M., Cordes, B., Kleeberg, C., Schweyen, P., Wolfram, B. & Bröring, M. (2016). Eur. J. Inorg. Chem.2016, 3076–3085.
Huang, Y., He, H., Liu, J., Thummel, R. P. & Tong, L. (2022). Chem. Asian J.17, e202200217. PubMed
Keith, J. A., Grice, K. A., Kubiak, C. P. & Carter, E. A. (2013). J. Am. Chem. Soc.135, 15823–15829. PubMed
Kim, D., Chun, H.-J., Donnelly, C. C. & Geier, G. R. (2016). J. Org. Chem.81, 5021–5031. PubMed
Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem.15, 848–855. PubMed PMC
Lehn, J. M. & Ziessel, R. (1990). J. Organomet. Chem.382, 157–173.
LeSaulnier, T. D., Graham, B. W. & Geier, G. R. (2005). Tetrahedron Lett.46, 5633–5637.
Li, S., Lightowler, M., Ou, X., Huang, S., Jiang, Y., Li, X., Zou, X., Xu, H. & Lu, M. (2023). Commun. Chem.6, 18. PubMed PMC
Machan, C. W., Sampson, M. D. & Kubiak, C. P. (2015). J. Am. Chem. Soc.137, 8564–8571. PubMed
Malone, J., Klaine, S., Alcantar, C., Bratcher, F. & Zhang, R. (2021). New J. Chem.45, 4977–4985.
Marek, M. R. J., Pham, T.-N., Wang, J., Cai, Q., Yap, G. P. A., Day, E. S. & Rosenthal, J. (2022). ACS Omega, 7, 36653–36662. PubMed PMC
Martin, M. I., Cai, Q., Yap, G. P. A. & Rosenthal, J. (2020). Inorg. Chem.59, 18241–18252. PubMed PMC
Martin, M. I., Pham, T.-N., Ward, K. N., Rice, A. T., Hertler, P. R., Yap, G. P. A., Gilmartin, P. H. & Rosenthal, J. (2023a). Dalton Trans.52, 7512–7523. PubMed PMC
Martin, S. M., Repa, G. M., Hamburger, R. C., Pointer, C. A., Ward, K., Pham, T.-N., Martin, M. I., Rosenthal, J., Fredin, L. A. & Young, E. R. (2023b). Phys. Chem. Chem. Phys.25, 2179–2189. PubMed
Miyano, T., Hirakawa, Y., Yamano, A. & Ueda, H. (2023a). CSD Communication, CCDC 2256537. https://doi.org/10.5517/ccdc.csd.cc2fr3jv.
Miyano, T., Hirakawa, Y., Yamano, A. & Ueda, H. (2023b). CSD Communication, CCDC 2256538. https://doi.org/10.5517/ccdc.csd.cc2fr3kw.
Nieto-Pescador, J., Abraham, B., Pistner, A. J., Rosenthal, J. & Gundlach, L. (2015). Phys. Chem. Chem. Phys.17, 7914–7923. PubMed PMC
O’Brien, A. Y., McGann, J. P. & Geier, G. R. (2007). J. Org. Chem.72, 4084–4092. PubMed
Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.
Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. & Klementová, M. (2019). Acta Cryst. B75, 512–522. PubMed
Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. (2023). Z. Kristallogr.238, 271–282.
Pistner, A., Martin, M. I., Yap, G. P. A. & Rosenthal, J. (2021). J. Porphyrins Phthalocyanines, 25, 683–695.
Pistner, A. J., Lutterman, D. A., Ghidiu, M., Walker, E., Yap, G. P. A. & Rosenthal, J. (2014a). J. Phys. Chem. C, 118, 14124–14132. PubMed PMC
Pistner, A. J., Lutterman, D. A., Ghidiu, M. J., Ma, Y.-Z. & Rosenthal, J. (2013). J. Am. Chem. Soc.135, 6601–6607. PubMed PMC
Pistner, A. J., Pupillo, R. C., Yap, G. P. A., Lutterman, D. A., Ma, Y.-Z. & Rosenthal, J. (2014b). J. Phys. Chem. A, 118, 10639–10648. PubMed PMC
Pistner, A. J., Yap, G. P. A. & Rosenthal, J. (2012). J. Phys. Chem. C, 116, 16918–16924. PubMed PMC
Pomarico, G., Xiao, X., Nardis, S., Paolesse, R., Fronczek, F. R., Smith, K. M., Fang, Y., Ou, Z. & Kadish, K. M. (2010). Inorg. Chem.49, 5766–5774. PubMed PMC
Potocny, A. M., Pistner, A. J., Yap, G. P. A. & Rosenthal, J. (2017). Inorg. Chem.56, 12703–12711. PubMed PMC
Potocny, A. M., Riley, R. S., O’Sullivan, R. K., Day, E. S. & Rosenthal, J. (2018). Inorg. Chem.57, 10608–10615. PubMed PMC
Potocny, A. M., Teesdale, J. J., Marangoz, A., Yap, G. P. A. & Rosenthal, J. (2019). Inorg. Chem.58, 5042–5050. PubMed PMC
Rice, A. T., Martin, M. I., Warndorf, M. C., Yap, G. P. A. & Rosenthal, J. (2021). Inorg. Chem.60, 11154–11163. PubMed
Rice, A. T., Yap, G. P. A. & Rosenthal, J. (2022). Photochem, 2, 58–68.
Riley, R. S., O’Sullivan, R. K., Potocny, A. M., Rosenthal, J. & Day, E. S. (2018). Nanomaterials, 8, 658–672. PubMed PMC
Salzmann, R., Ziegler, C. J., Godbout, N., McMahon, M. T., Suslick, K. S. & Oldfield, E. (1998). J. Am. Chem. Soc.120, 11323–11334.
Shah, H. S., Yuan, J., Xie, T., Yang, Z., Chang, C., Greenwell, C., Zeng, Q., Sun, G., Read, B. N., Wilson, T. S., Valle, H. U., Kuang, S., Wang, J., Sekharan, S. & Bruhn, J. F. (2023). Chem. A Eur. J.29, e2022039. PubMed PMC
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
Slebodnick, C., Seok, W. K., Kim, K. & Ibers, J. A. (1996). Inorg. Chim. Acta, 243, 57–65.
Smieja, J. M. & Kubiak, C. P. (2010). Inorg. Chem.49, 9283–9289. PubMed
Teesdale, J. J., Pistner, A. J., Yap, G. P. A., Ma, Y.-Z., Lutterman, D. A. & Rosenthal, J. (2014). Catal. Today, 225, 149–157. PubMed PMC
Vidal, A., Battistin, F., Iengo, E., Milani, B. & Alessio, E. (2019). Eur. J. Inorg. Chem.2019, 2883–2890.
Wang, J., Potocny, A. M., Rosenthal, J. & Day, E. S. (2020). ACS Omega, 5, 926–940. PubMed PMC