Bioleaching of Manganese Oxides at Different Oxidation States by Filamentous Fungus Aspergillus niger

. 2021 Sep 28 ; 7 (10) : . [epub] 20210928

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34682230

Grantová podpora
1/0146/18 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
CZ.02.1.01/0.0/0.0/16_019/0000778 European Regional Development Fund
UK/166/2021 Univerzita Komenského v Bratislave

This work aimed to examine the bioleaching of manganese oxides at various oxidation states (MnO, MnO·Mn2O3, Mn2O3 and MnO2) by a strain of the filamentous fungus Aspergillus niger, a frequent soil representative. Our results showed that the fungus effectively disintegrated the crystal structure of selected mineral manganese phases. Thereby, during a 31-day static incubation of oxides in the presence of fungus, manganese was bioextracted into the culture medium and, in some cases, transformed into a new biogenic mineral. The latter resulted from the precipitation of extracted manganese with biogenic oxalate. The Mn(II,III)-oxide was the most susceptible to fungal biodeterioration, and up to 26% of the manganese content in oxide was extracted by the fungus into the medium. The detected variabilities in biogenic oxalate and gluconate accumulation in the medium are also discussed regarding the fungal sensitivity to manganese. These suggest an alternative pathway of manganese oxides' biodeterioration via a reductive dissolution. There, the oxalate metabolites are consumed as the reductive agents. Our results highlight the significance of fungal activity in manganese mobilization and transformation. The soil fungi should be considered an important geoactive agent that affects the stability of natural geochemical barriers.

Zobrazit více v PubMed

Gilkes R.J., McKenzie R.M. Geochemistry and Mineralogy of Manganese in Soils. In: Graham R.D., Hannam R.J., Uren N.C., editors. Manganese in Soils and Plants, Proceedings of the International Symposium on ‘Manganese in Soils and Plants’, Adelaide, Australia, 22–26 August 1988. Springer; Dordrecht, The Netherlands: 1988. pp. 23–35.

Tebo B.M., Bargar J.R., Clement B.G., Dick G.J., Murray K.J., Parker D., Verity R., Webb S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004;32:287–328. doi: 10.1146/annurev.earth.32.101802.120213. DOI

Robson A.D. Manganese in Soils and Plants—An Overview. In: Graham R.D., Hannam R.J., Uren N.C., editors. Manganese in Soils and Plants, Proceedings of the International Symposium on ‘Manganese in Soils and Plants’, Adelaide, Australia, 22–26 August 1988. Springer; Dordrecht, The Netherlands: 1988. pp. 329–333.

Baranowski R., Rybak A., Baranowska I. Speciation Analysis of Elements in Soil Samples by XRF. Pol. J. Environ. Stud. 2002;11:473–482.

Baranowski R., Rybak A., Sobczyński T. X-ray Fluorescence Spectrometry in Speciation Analysis of Bottom Sediments. J. Environ. Stud. 2001;10:297–306.

Zerbe J., Sobczyński T., Elbanowska H., Siepak J. Speciation of heavy metals in bottom sediments of lakes. Pol. J. Environ. Stud. 1999;8:331–339.

Remucal C.K., Ginder-Vogel M. A critical review of the reactivity of manganese oxides with organic contaminants. Environ. Sci. Process. Impacts. 2014;16:1247–1266. doi: 10.1039/c3em00703k. PubMed DOI

Archibald F.S., Fridovich I. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J. Bacteriol. 1981;145:442–451. doi: 10.1128/jb.145.1.442-451.1981. PubMed DOI PMC

Fernando D.R., Lynch J.P. Manganese phytotoxicity: New light on an old problem. Ann. Bot. 2015;116:313–319. doi: 10.1093/aob/mcv111. PubMed DOI PMC

Culotta V.C., Yang M., Hall M.D. Manganese transport and trafficking: Lessons learned from Saccharomyces cerevisiae. Eukaryot. Cell. 2005;4:1159–1165. doi: 10.1128/EC.4.7.1159-1165.2005. PubMed DOI PMC

Perel’man A.I. Geochemical barriers: Theory and practical applications. Appl. Geochem. 1986;1:669–680. doi: 10.1016/0883-2927(86)90088-0. DOI

Hagarová I. Utilization of biosurfactants in remediation of environmental media contaminated with heavy metals. Chem. Listy. 2015;109:431–436.

Hagarová I. Extractions complying with the principles of green chemistry used in trace analysis of metals. Chem. Listy. 2015;109:269–275.

Boriová K., Urík M., Bujdoš M., Pifková I., Matúš P. Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger’s exometabolites. Environ. Pollut. 2016;218:281–288. doi: 10.1016/j.envpol.2016.07.003. PubMed DOI

Zwietering M.H., Jongenburger I., Rombouts F.M., van‘t Riet K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990;56:1875–1881. doi: 10.1128/aem.56.6.1875-1881.1990. PubMed DOI PMC

Sádecká J., Polonský J. Determination of organic acids in tobacco by capillary isotachophoresis. J. Chromatogr. A. 2003;988:161–165. doi: 10.1016/S0021-9673(03)00033-5. PubMed DOI

Farkas B., Kolenčík M., Hain M., Dobročka E., Kratošová G., Bujdoš M., Feng H., Deng Y., Yu Q., Illa R., et al. Aspergillus niger decreases bioavailability of arsenic(V) via biotransformation of manganese oxide into biogenic oxalate minerals. J. Fungi. 2020;6:270. doi: 10.3390/jof6040270. PubMed DOI PMC

Urík M., Farkas B., Miglierini M.B., Bujdoš M., Mitróová Z., Kim H., Matúš P. Mobilisation of hazardous elements from arsenic-rich mine drainage ochres by three Aspergillus species. J. Hazard. Mater. 2021;409:124938. doi: 10.1016/j.jhazmat.2020.124938. PubMed DOI

Grangeon S., Bataillard P., Coussy S. The Nature of Manganese Oxides in Soils and Their Role as Scavengers of Trace Elements: Implication for Soil Remediation. In: van Hullebusch E.D., Huguenot D., Pechaud Y., Simonnot M.-O., Colombano S., editors. Environmental Soil Remediation and Rehabilitation: Existing and Innovative Solutions. Springer International Publishing; Cham, Switzerland: 2020. pp. 399–429.

Farkas B., Urík M., Matúš P. Manganese biotransformation by microorganisms. Chem. Listy. 2020;114:841–846.

Das A.P., Sukla L.B., Pradhan N., Nayak S. Manganese biomining: A review. Bioresour. Technol. 2011;102:7381–7387. doi: 10.1016/j.biortech.2011.05.018. PubMed DOI

Acharya C., Kar R.N., Sukla L.B. Studies on reaction mechanism of bioleaching of manganese ore. Miner. Eng. 2003;16:1027–1030. doi: 10.1016/S0892-6875(03)00239-5. DOI

Mehta K.D., Das C., Pandey B.D. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger. Hydrometallurgy. 2010;105:89–95. doi: 10.1016/j.hydromet.2010.08.002. DOI

Keshavarz S., Faraji F., Rashchi F., Mokmeli M. Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies. J. Environ. Manag. 2021;285:112153. doi: 10.1016/j.jenvman.2021.112153. PubMed DOI

Kim M.-J., Seo J.-Y., Choi Y.-S., Kim G.-H. Bioleaching of spent Zn–Mn or Ni–Cd batteries by Aspergillus species. Waste Manag. 2016;51:168–173. doi: 10.1016/j.wasman.2015.11.001. PubMed DOI

Polák F., Urík M., Matúš P. Low molecular weight organic acids in soil environment. Chem. Listy. 2019;113:307–314.

Bagar T., Altenbach K., Read N.D., Bencina M. Live-Cell imaging and measurement of intracellular pH in filamentous fungi using a genetically encoded ratiometric probe. Eukaryot. Cell. 2009;8:703–712. doi: 10.1128/EC.00333-08. PubMed DOI PMC

Serrano R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim. Biophys. Acta Rev. Biomembr. 1988;947:1–28. doi: 10.1016/0304-4157(88)90017-2. PubMed DOI

Urík M., Polák F., Bujdoš M., Pifková I., Kořenková L., Littera P., Matúš P. Aluminium Leaching by Heterotrophic Microorganism Aspergillus niger: An Acidic Leaching? Arab. J. Sci. Eng. 2018;43:2369–2374. doi: 10.1007/s13369-017-2784-8. DOI

Ruijter G.J.G., van de Vondervoort P.J.I., Visser J. Oxalic acid production by Aspergillus niger: An oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology. 1999;145:2569–2576. doi: 10.1099/00221287-145-9-2569. PubMed DOI

Xyla A.G., Sulzberger B., Luther G.W., Hering J.G., Van Cappellen P., Stumm W. Reductive dissolution of manganese(III, IV) (hydr)oxides by oxalate: The effect of pH and light. Langmuir. 1992;8:95–103. doi: 10.1021/la00037a019. DOI

Miyata N., Tani Y., Iwahori K., Soma M. Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol. Ecol. 2004;47:101–109. doi: 10.1016/S0168-6496(03)00251-4. PubMed DOI

Höfer C., Schlosser D. Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase. FEBS Lett. 1999;451:186–190. doi: 10.1016/S0014-5793(99)00566-9. PubMed DOI

Zeiner C.A., Purvine S.O., Zink E., Wu S., Paša-Tolić L., Chaput D.L., Santelli C.M., Hansel C.M. Mechanisms of Manganese(II) Oxidation by Filamentous Ascomycete Fungi Vary with Species and Time as a Function of Secretome Composition. Front. Microbiol. 2021;12:81. doi: 10.3389/fmicb.2021.610497. PubMed DOI PMC

Tang Y., Zeiner C.A., Santelli C.M., Hansel C.M. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environ. Microbiol. 2013;15:1063–1077. doi: 10.1111/1462-2920.12029. PubMed DOI

Johnson D.B., Pakostova E. Dissolution of Manganese (IV) Oxide Mediated by Acidophilic Bacteria, and Demonstration That Manganese (IV) Can Act as Both a Direct and Indirect Electron Acceptor for Iron-Reducing Acidithiobacillus spp. Geomicrobiol. J. 2021;38:570–576. doi: 10.1080/01490451.2021.1903624. DOI

Wei Z., Hillier S., Gadd G.M. Biotransformation of manganese oxides by fungi: Solubilization and production of manganese oxalate biominerals. Environ. Microbiol. 2012;14:1744–1753. doi: 10.1111/j.1462-2920.2012.02776.x. PubMed DOI

Gadd G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology. 2010;156:609–643. doi: 10.1099/mic.0.037143-0. PubMed DOI

Das A.P., Swain S., Panda S., Pradhan N., Sukla L.B. Reductive Acid Leaching of Low Grade Manganese Ores. Geomaterials. 2012;2:70–72. doi: 10.4236/gm.2012.24011. DOI

Karaffa L., Kubicek C. Production of Organic Acids by Fungi. In: Hofrichter M., editor. The Mycota. Industrial Applications. Springer; Berlin/Heidelberg, Germay: 2020. pp. 215–234.

Šimonovičová A., Kupka D., Nosalj S., Kraková L., Drahovská H., Bártová Z., Vojtková H., Boturová K., Pangallo D. Differences in metabolites production using the Biolog FF Microplate™ system with an emphasis on some organic acids of Aspergillus niger wild type strains. Biologia. 2020;75:1537–1546. doi: 10.2478/s11756-020-00521-y. DOI

Show P.L., Oladele K.O., Siew Q.Y., Aziz Zakry F.A., Lan J.C.-W., Ling T.C. Overview of citric acid production from Aspergillus niger. Front. Life Sci. 2015;8:271–283. doi: 10.1080/21553769.2015.1033653. DOI

Ahmed A.S., Farag S.S., Hassan I.A., Botros H.W. Production of gluconic acid by using some irradiated microorganisms. J. Radiat. Res. Appl. Sci. 2015;8:374–380. doi: 10.1016/j.jrras.2015.02.006. DOI

Schmitz K., Peter V., Meinert S., Kornfeld G., Hardiman T., Wiechert W., Noack S. Simultaneous utilization of glucose and gluconate in Penicillium chrysogenum during overflow metabolism. Biotechnol. Bioeng. 2013;110:3235–3243. doi: 10.1002/bit.24974. PubMed DOI

Ferrier J., Yang Y., Csetenyi L., Gadd G.M. Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger. Environ. Microbiol. 2019;21:1821–1832. doi: 10.1111/1462-2920.14591. PubMed DOI PMC

Fomina M., Hillier S., Charnock J.M., Melville K., Alexander I.J., Gadd G.M. Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria caledonica. Appl. Environ. Microbiol. 2005;71:371–381. doi: 10.1128/AEM.71.1.371-381.2005. PubMed DOI PMC

Cheung H.Y., Vitkovič L., Brown M.R.W. Toxic Effect of Manganese on Growth and Sporulation of Bacillus stearothermophilus. Microbiology. 1982;128:2395–2402. doi: 10.1099/00221287-128-10-2395. DOI

Green Iii F., Clausen C.A. Copper tolerance of brown-rot fungi: Time course of oxalic acid production. Int. Biodeterior. Biodegrad. 2003;51:145–149. doi: 10.1016/S0964-8305(02)00099-9. DOI

Li Q., Liu D., Jia Z., Csetenyi L., Gadd G.M. Fungal Biomineralization of Manganese as a Novel Source of Electrochemical Materials. Curr. Biol. 2016;26:950–955. doi: 10.1016/j.cub.2016.01.068. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...