Bioleaching of Manganese Oxides at Different Oxidation States by Filamentous Fungus Aspergillus niger
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0146/18
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
CZ.02.1.01/0.0/0.0/16_019/0000778
European Regional Development Fund
UK/166/2021
Univerzita Komenského v Bratislave
PubMed
34682230
PubMed Central
PMC8540447
DOI
10.3390/jof7100808
PII: jof7100808
Knihovny.cz E-zdroje
- Klíčová slova
- bioextraction, bioleaching, filamentous fungi, manganese oxide, oxalate,
- Publikační typ
- časopisecké články MeSH
This work aimed to examine the bioleaching of manganese oxides at various oxidation states (MnO, MnO·Mn2O3, Mn2O3 and MnO2) by a strain of the filamentous fungus Aspergillus niger, a frequent soil representative. Our results showed that the fungus effectively disintegrated the crystal structure of selected mineral manganese phases. Thereby, during a 31-day static incubation of oxides in the presence of fungus, manganese was bioextracted into the culture medium and, in some cases, transformed into a new biogenic mineral. The latter resulted from the precipitation of extracted manganese with biogenic oxalate. The Mn(II,III)-oxide was the most susceptible to fungal biodeterioration, and up to 26% of the manganese content in oxide was extracted by the fungus into the medium. The detected variabilities in biogenic oxalate and gluconate accumulation in the medium are also discussed regarding the fungal sensitivity to manganese. These suggest an alternative pathway of manganese oxides' biodeterioration via a reductive dissolution. There, the oxalate metabolites are consumed as the reductive agents. Our results highlight the significance of fungal activity in manganese mobilization and transformation. The soil fungi should be considered an important geoactive agent that affects the stability of natural geochemical barriers.
Department of Environment and Energy Jeonbuk National University Jeonju si 54896 Korea
Polymer Institute Slovak Academy of Sciences Dúbravská Cesta 9 845 41 Bratislava Slovakia
Zobrazit více v PubMed
Gilkes R.J., McKenzie R.M. Geochemistry and Mineralogy of Manganese in Soils. In: Graham R.D., Hannam R.J., Uren N.C., editors. Manganese in Soils and Plants, Proceedings of the International Symposium on ‘Manganese in Soils and Plants’, Adelaide, Australia, 22–26 August 1988. Springer; Dordrecht, The Netherlands: 1988. pp. 23–35.
Tebo B.M., Bargar J.R., Clement B.G., Dick G.J., Murray K.J., Parker D., Verity R., Webb S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004;32:287–328. doi: 10.1146/annurev.earth.32.101802.120213. DOI
Robson A.D. Manganese in Soils and Plants—An Overview. In: Graham R.D., Hannam R.J., Uren N.C., editors. Manganese in Soils and Plants, Proceedings of the International Symposium on ‘Manganese in Soils and Plants’, Adelaide, Australia, 22–26 August 1988. Springer; Dordrecht, The Netherlands: 1988. pp. 329–333.
Baranowski R., Rybak A., Baranowska I. Speciation Analysis of Elements in Soil Samples by XRF. Pol. J. Environ. Stud. 2002;11:473–482.
Baranowski R., Rybak A., Sobczyński T. X-ray Fluorescence Spectrometry in Speciation Analysis of Bottom Sediments. J. Environ. Stud. 2001;10:297–306.
Zerbe J., Sobczyński T., Elbanowska H., Siepak J. Speciation of heavy metals in bottom sediments of lakes. Pol. J. Environ. Stud. 1999;8:331–339.
Remucal C.K., Ginder-Vogel M. A critical review of the reactivity of manganese oxides with organic contaminants. Environ. Sci. Process. Impacts. 2014;16:1247–1266. doi: 10.1039/c3em00703k. PubMed DOI
Archibald F.S., Fridovich I. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J. Bacteriol. 1981;145:442–451. doi: 10.1128/jb.145.1.442-451.1981. PubMed DOI PMC
Fernando D.R., Lynch J.P. Manganese phytotoxicity: New light on an old problem. Ann. Bot. 2015;116:313–319. doi: 10.1093/aob/mcv111. PubMed DOI PMC
Culotta V.C., Yang M., Hall M.D. Manganese transport and trafficking: Lessons learned from Saccharomyces cerevisiae. Eukaryot. Cell. 2005;4:1159–1165. doi: 10.1128/EC.4.7.1159-1165.2005. PubMed DOI PMC
Perel’man A.I. Geochemical barriers: Theory and practical applications. Appl. Geochem. 1986;1:669–680. doi: 10.1016/0883-2927(86)90088-0. DOI
Hagarová I. Utilization of biosurfactants in remediation of environmental media contaminated with heavy metals. Chem. Listy. 2015;109:431–436.
Hagarová I. Extractions complying with the principles of green chemistry used in trace analysis of metals. Chem. Listy. 2015;109:269–275.
Boriová K., Urík M., Bujdoš M., Pifková I., Matúš P. Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger’s exometabolites. Environ. Pollut. 2016;218:281–288. doi: 10.1016/j.envpol.2016.07.003. PubMed DOI
Zwietering M.H., Jongenburger I., Rombouts F.M., van‘t Riet K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990;56:1875–1881. doi: 10.1128/aem.56.6.1875-1881.1990. PubMed DOI PMC
Sádecká J., Polonský J. Determination of organic acids in tobacco by capillary isotachophoresis. J. Chromatogr. A. 2003;988:161–165. doi: 10.1016/S0021-9673(03)00033-5. PubMed DOI
Farkas B., Kolenčík M., Hain M., Dobročka E., Kratošová G., Bujdoš M., Feng H., Deng Y., Yu Q., Illa R., et al. Aspergillus niger decreases bioavailability of arsenic(V) via biotransformation of manganese oxide into biogenic oxalate minerals. J. Fungi. 2020;6:270. doi: 10.3390/jof6040270. PubMed DOI PMC
Urík M., Farkas B., Miglierini M.B., Bujdoš M., Mitróová Z., Kim H., Matúš P. Mobilisation of hazardous elements from arsenic-rich mine drainage ochres by three Aspergillus species. J. Hazard. Mater. 2021;409:124938. doi: 10.1016/j.jhazmat.2020.124938. PubMed DOI
Grangeon S., Bataillard P., Coussy S. The Nature of Manganese Oxides in Soils and Their Role as Scavengers of Trace Elements: Implication for Soil Remediation. In: van Hullebusch E.D., Huguenot D., Pechaud Y., Simonnot M.-O., Colombano S., editors. Environmental Soil Remediation and Rehabilitation: Existing and Innovative Solutions. Springer International Publishing; Cham, Switzerland: 2020. pp. 399–429.
Farkas B., Urík M., Matúš P. Manganese biotransformation by microorganisms. Chem. Listy. 2020;114:841–846.
Das A.P., Sukla L.B., Pradhan N., Nayak S. Manganese biomining: A review. Bioresour. Technol. 2011;102:7381–7387. doi: 10.1016/j.biortech.2011.05.018. PubMed DOI
Acharya C., Kar R.N., Sukla L.B. Studies on reaction mechanism of bioleaching of manganese ore. Miner. Eng. 2003;16:1027–1030. doi: 10.1016/S0892-6875(03)00239-5. DOI
Mehta K.D., Das C., Pandey B.D. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger. Hydrometallurgy. 2010;105:89–95. doi: 10.1016/j.hydromet.2010.08.002. DOI
Keshavarz S., Faraji F., Rashchi F., Mokmeli M. Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies. J. Environ. Manag. 2021;285:112153. doi: 10.1016/j.jenvman.2021.112153. PubMed DOI
Kim M.-J., Seo J.-Y., Choi Y.-S., Kim G.-H. Bioleaching of spent Zn–Mn or Ni–Cd batteries by Aspergillus species. Waste Manag. 2016;51:168–173. doi: 10.1016/j.wasman.2015.11.001. PubMed DOI
Polák F., Urík M., Matúš P. Low molecular weight organic acids in soil environment. Chem. Listy. 2019;113:307–314.
Bagar T., Altenbach K., Read N.D., Bencina M. Live-Cell imaging and measurement of intracellular pH in filamentous fungi using a genetically encoded ratiometric probe. Eukaryot. Cell. 2009;8:703–712. doi: 10.1128/EC.00333-08. PubMed DOI PMC
Serrano R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim. Biophys. Acta Rev. Biomembr. 1988;947:1–28. doi: 10.1016/0304-4157(88)90017-2. PubMed DOI
Urík M., Polák F., Bujdoš M., Pifková I., Kořenková L., Littera P., Matúš P. Aluminium Leaching by Heterotrophic Microorganism Aspergillus niger: An Acidic Leaching? Arab. J. Sci. Eng. 2018;43:2369–2374. doi: 10.1007/s13369-017-2784-8. DOI
Ruijter G.J.G., van de Vondervoort P.J.I., Visser J. Oxalic acid production by Aspergillus niger: An oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology. 1999;145:2569–2576. doi: 10.1099/00221287-145-9-2569. PubMed DOI
Xyla A.G., Sulzberger B., Luther G.W., Hering J.G., Van Cappellen P., Stumm W. Reductive dissolution of manganese(III, IV) (hydr)oxides by oxalate: The effect of pH and light. Langmuir. 1992;8:95–103. doi: 10.1021/la00037a019. DOI
Miyata N., Tani Y., Iwahori K., Soma M. Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol. Ecol. 2004;47:101–109. doi: 10.1016/S0168-6496(03)00251-4. PubMed DOI
Höfer C., Schlosser D. Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase. FEBS Lett. 1999;451:186–190. doi: 10.1016/S0014-5793(99)00566-9. PubMed DOI
Zeiner C.A., Purvine S.O., Zink E., Wu S., Paša-Tolić L., Chaput D.L., Santelli C.M., Hansel C.M. Mechanisms of Manganese(II) Oxidation by Filamentous Ascomycete Fungi Vary with Species and Time as a Function of Secretome Composition. Front. Microbiol. 2021;12:81. doi: 10.3389/fmicb.2021.610497. PubMed DOI PMC
Tang Y., Zeiner C.A., Santelli C.M., Hansel C.M. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environ. Microbiol. 2013;15:1063–1077. doi: 10.1111/1462-2920.12029. PubMed DOI
Johnson D.B., Pakostova E. Dissolution of Manganese (IV) Oxide Mediated by Acidophilic Bacteria, and Demonstration That Manganese (IV) Can Act as Both a Direct and Indirect Electron Acceptor for Iron-Reducing Acidithiobacillus spp. Geomicrobiol. J. 2021;38:570–576. doi: 10.1080/01490451.2021.1903624. DOI
Wei Z., Hillier S., Gadd G.M. Biotransformation of manganese oxides by fungi: Solubilization and production of manganese oxalate biominerals. Environ. Microbiol. 2012;14:1744–1753. doi: 10.1111/j.1462-2920.2012.02776.x. PubMed DOI
Gadd G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology. 2010;156:609–643. doi: 10.1099/mic.0.037143-0. PubMed DOI
Das A.P., Swain S., Panda S., Pradhan N., Sukla L.B. Reductive Acid Leaching of Low Grade Manganese Ores. Geomaterials. 2012;2:70–72. doi: 10.4236/gm.2012.24011. DOI
Karaffa L., Kubicek C. Production of Organic Acids by Fungi. In: Hofrichter M., editor. The Mycota. Industrial Applications. Springer; Berlin/Heidelberg, Germay: 2020. pp. 215–234.
Šimonovičová A., Kupka D., Nosalj S., Kraková L., Drahovská H., Bártová Z., Vojtková H., Boturová K., Pangallo D. Differences in metabolites production using the Biolog FF Microplate™ system with an emphasis on some organic acids of Aspergillus niger wild type strains. Biologia. 2020;75:1537–1546. doi: 10.2478/s11756-020-00521-y. DOI
Show P.L., Oladele K.O., Siew Q.Y., Aziz Zakry F.A., Lan J.C.-W., Ling T.C. Overview of citric acid production from Aspergillus niger. Front. Life Sci. 2015;8:271–283. doi: 10.1080/21553769.2015.1033653. DOI
Ahmed A.S., Farag S.S., Hassan I.A., Botros H.W. Production of gluconic acid by using some irradiated microorganisms. J. Radiat. Res. Appl. Sci. 2015;8:374–380. doi: 10.1016/j.jrras.2015.02.006. DOI
Schmitz K., Peter V., Meinert S., Kornfeld G., Hardiman T., Wiechert W., Noack S. Simultaneous utilization of glucose and gluconate in Penicillium chrysogenum during overflow metabolism. Biotechnol. Bioeng. 2013;110:3235–3243. doi: 10.1002/bit.24974. PubMed DOI
Ferrier J., Yang Y., Csetenyi L., Gadd G.M. Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger. Environ. Microbiol. 2019;21:1821–1832. doi: 10.1111/1462-2920.14591. PubMed DOI PMC
Fomina M., Hillier S., Charnock J.M., Melville K., Alexander I.J., Gadd G.M. Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria caledonica. Appl. Environ. Microbiol. 2005;71:371–381. doi: 10.1128/AEM.71.1.371-381.2005. PubMed DOI PMC
Cheung H.Y., Vitkovič L., Brown M.R.W. Toxic Effect of Manganese on Growth and Sporulation of Bacillus stearothermophilus. Microbiology. 1982;128:2395–2402. doi: 10.1099/00221287-128-10-2395. DOI
Green Iii F., Clausen C.A. Copper tolerance of brown-rot fungi: Time course of oxalic acid production. Int. Biodeterior. Biodegrad. 2003;51:145–149. doi: 10.1016/S0964-8305(02)00099-9. DOI
Li Q., Liu D., Jia Z., Csetenyi L., Gadd G.M. Fungal Biomineralization of Manganese as a Novel Source of Electrochemical Materials. Curr. Biol. 2016;26:950–955. doi: 10.1016/j.cub.2016.01.068. PubMed DOI