Involvement of Bacterial and Fungal Extracellular Products in Transformation of Manganese-Bearing Minerals and Its Environmental Impact

. 2023 May 24 ; 24 (11) : . [epub] 20230524

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37298163

Grantová podpora
VEGA 1/0175/22 Scientific Grant Agency of the Slovak Republic Ministry of Education and the Slovak Acade-my of Sciences
NPRP-Standard (NPRP-S) Thirteenth Cycle grant # NPRP13S-0123-200153 Qatar National Research Fund (a member of Qatar Foundation)
The Project for Specific University Research (SGS) No. SP2023/004 Faculty of Mining and Geology of VSB-Technical University of Ostrava
313011V578 ITMS 2014+

Manganese oxides are considered an essential component of natural geochemical barriers due to their redox and sorptive reactivity towards essential and potentially toxic trace elements. Despite the perception that they are in a relatively stable phase, microorganisms can actively alter the prevailing conditions in their microenvironment and initiate the dissolution of minerals, a process that is governed by various direct (enzymatic) or indirect mechanisms. Microorganisms are also capable of precipitating the bioavailable manganese ions via redox transformations into biogenic minerals, including manganese oxides (e.g., low-crystalline birnessite) or oxalates. Microbially mediated transformation influences the (bio)geochemistry of manganese and also the environmental chemistry of elements intimately associated with its oxides. Therefore, the biodeterioration of manganese-bearing phases and the subsequent biologically induced precipitation of new biogenic minerals may inevitably and severely impact the environment. This review highlights and discusses the role of microbially induced or catalyzed processes that affect the transformation of manganese oxides in the environment as relevant to the function of geochemical barriers.

Zobrazit více v PubMed

Perel’man A.I. Geochemical barriers: Theory and practical applications. Appl. Geochem. 1986;1:669–680. doi: 10.1016/0883-2927(86)90088-0. DOI

Khaustov A., Redina M. Geochemical barriers as structural components of the geochemical systems evolution. E3S Web. Conf. 2019;98:01026. doi: 10.1051/e3sconf/20199801026. DOI

Tebo B.M., Bargar J.R., Clement B.G., Dick G.J., Murray K.J., Parker D., Verity R., Webb S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004;32:287–328. doi: 10.1146/annurev.earth.32.101802.120213. DOI

Allard S., Gutierrez L., Fontaine C., Croué J.-P., Gallard H. Organic matter interactions with natural manganese oxide and synthetic birnessite. Sci. Total Environ. 2017;583:487–495. doi: 10.1016/j.scitotenv.2017.01.120. PubMed DOI

Bernard S., Chazal P., Mazet M. Removal of organic compounds by adsorption on pyrolusite (β-MnO2) Water Res. 1997;31:1216–1222. doi: 10.1016/S0043-1354(96)00149-2. DOI

Bin Yousaf A., Zavahir S., Zeb A., Michalcova A., Kasak P. Nanostructural synergism as MnNC channels in manganese (IV) oxide and fluffy g-C3N4 layered composite with exceptional catalytic capabilities. J. Colloid. Interface Sci. 2022;610:258–270. doi: 10.1016/j.jcis.2021.12.023. PubMed DOI

Remucal C.K., Ginder-Vogel M. A critical review of the reactivity of manganese oxides with organic contaminants. Environ. Sci. Process. Impacts. 2014;16:1247–1266. doi: 10.1039/c3em00703k. PubMed DOI

Dikicioglu D., Oliver S.G. Extension of the yeast metabolic model to include iron metabolism and its use to estimate global levels of iron-recruiting enzyme abundance from cofactor requirements. Biotechnol. Bioeng. 2019;116:610–621. doi: 10.1002/bit.26905. PubMed DOI PMC

Ijaz A., Mumtaz M.Z., Wang X., Ahmad M., Saqib M., Maqbool H., Zaheer A., Wang W., Mustafa A. Insights Into Manganese Solubilizing Bacillus spp. for Improving Plant Growth and Manganese Uptake in Maize. Front. Plant Sci. 2021;12:719504. doi: 10.3389/fpls.2021.719504. PubMed DOI PMC

Hazen R., Papineau D., Bleeker W., Downs R., Ferry J., McCoy T., Sverjensky D., Yang H. Mineral evolution. Am. Mineral. 2008;93:1693–1720. doi: 10.2138/am.2008.2955. DOI

Dong H., Huang L., Zhao L., Zeng Q., Liu X., Sheng Y., Shi L., Wu G., Jiang H., Li F., et al. A critical review of mineral–microbe interaction and co-evolution: Mechanisms and applications. Natl. Sci. Rev. 2022;9:nwac128. doi: 10.1093/nsr/nwac128. PubMed DOI PMC

Ribeiro I.D.A., Volpiano C.G., Vargas L.K., Granada C.E., Lisboa B.B., Passaglia L.M.P. Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in Crops: A Review. Front. Plant Sci. 2020;11:590774. doi: 10.3389/fpls.2020.590774. PubMed DOI PMC

Duckworth O.W., Bargar J.R., Sposito G. Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. BioMetals. 2009;22:605–613. doi: 10.1007/s10534-009-9220-9. PubMed DOI

Kolenčík M., Urík M., Štubňa J. Heterotrophic leaching and its application in biohydrometallurgy. Chem. Listy. 2014;108:1040–1045.

Gadd G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology. 2010;156:609–643. doi: 10.1099/mic.0.037143-0. PubMed DOI

Hartshorne R.S., Reardon C.L., Ross D., Nuester J., Clarke T.A., Gates A.J., Mills P.C., Fredrickson J.K., Zachara J.M., Shi L., et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl. Acad. Sci. USA. 2009;106:22169. doi: 10.1073/pnas.0900086106. PubMed DOI PMC

Farkas B., Bujdoš M., Polák F., Matulová M., Cesnek M., Duborská E., Zvěřina O., Kim H., Danko M., Kisová Z., et al. Bioleaching of Manganese Oxides at Different Oxidation States by Filamentous Fungus Aspergillus niger. J. Fungi. 2021;7:808. doi: 10.3390/jof7100808. PubMed DOI PMC

Gadd G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007;111:3–49. doi: 10.1016/j.mycres.2006.12.001. PubMed DOI

Farkas B., Urík M., Matúš P. Manganese biotransformation by microorganisms. Chem. Listy. 2020;114:841–846.

Hagarová I. Utilization of biosurfactants in remediation of environmental media contaminated with heavy metals. Chem. Listy. 2015;109:431–436.

Hagarová I. Extractions Complying With the Principles of Green Chemistry Used in Trace Analysis of Metals. Chem. Listy. 2015;109:269–275.

Attanayake C.P., Kumaragamage D., Amarawansha G., Hettiarachchi G.M., Indraratne S.P., Goltz D.M. Phosphorus Release and Speciation in Manganese (IV) Oxide and Zeolite-Amended Flooded Soils. Environ. Sci. Technol. 2022;56:8082–8093. doi: 10.1021/acs.est.2c01185. PubMed DOI

Wu K., Li Y., Liu T., Huang Q., Yang S., Wang W., Jin P. The simultaneous adsorption of nitrate and phosphate by an organic-modified aluminum-manganese bimetal oxide: Adsorption properties and mechanisms. Appl. Surf. Sci. 2019;478:539–551. doi: 10.1016/j.apsusc.2019.01.194. DOI

Alejandro S., Höller S., Meier B., Peiter E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020;11:300. doi: 10.3389/fpls.2020.00300. PubMed DOI PMC

Corpas F.J., Barroso J.B., Palma J.M., Rodriguez-Ruiz M. Plant peroxisomes: A nitro-oxidative cocktail. Redox. Biol. 2017;11:535–542. doi: 10.1016/j.redox.2016.12.033. PubMed DOI PMC

Dreyer M., Wichmann M., Rischen M., Görlach B.M., Ehmke A., Pitann B., Mühling K.H. Ammonium-driven nitrification plays a key role in increasing Mn availability in calcareous soils. J. Plant Nutr. Soil Sci. 2020;183:550. doi: 10.1002/jpln.202070045. DOI

Huang Y.L., Yang S., Long G.X., Zhao Z.K., Li X.F., Gu M.H. Manganese Toxicity in Sugarcane Plantlets Grown on Acidic Soils of Southern China. PLoS ONE. 2016;11:e0148956. doi: 10.1371/journal.pone.0148956. PubMed DOI PMC

Post J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA. 1999;96:3447. doi: 10.1073/pnas.96.7.3447. PubMed DOI PMC

Vodyanitskii Y.N. Mineralogy and geochemistry of manganese: A review of publications. Eurasian. Soil Sci. 2009;42:1170–1178. doi: 10.1134/S1064229309100123. DOI

Chukhrov F.V., Gorshkov A.I., Rudnitskaya E.S., Beresovskaya V.V., Sivtsov A.V. Manganese Minerals in Clays: A Review. Clays Clay Miner. 1980;28:346–354. doi: 10.1346/CCMN.1980.0280504. DOI

Robson A.D. Manganese in Soils and Plants—An Overview. In: Graham R.D., Hannam R.J., Uren N.C., editors. Manganese in Soils and Plants, Proceedings of the International Symposium on ‘Manganese in Soils and Plants’ Held at the Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond, Australia, 22–26 August 1988. Springer; Dordrecht, The Netherlands: 1988. pp. 329–333. as an Australian Bicentennial Event.

Bowen H. Environmental Chemistry of Elements. Acedemic Press; New York, NY, USA: 1979.

Adriano D.C. Manganese. In: Adriano D.C., editor. Trace Elements in the Terrestrial Environment. Springer; New York, NY, USA: 1986. pp. 263–297.

Cornell R.M., Schwertmann U. Cation Substitution. In: Cornell R.M., Schwertmann U., editors. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley; New York, NY, USA: 2006. pp. 39–58.

Gilkes R.J., McKenzie R.M. Geochemistry and Mineralogy of Manganese in Soils. In: Graham R.D., Hannam R.J., Uren N.C., editors. Manganese in Soils and Plants, Proceedings of the International Symposium on ‘Manganese in Soils and Plants’ Held at the Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond, Australia, 22–26 August 1988. Springer; Dordrecht, The Netherlands: 1988. pp. 23–35. as an Australian Bicentennial Event.

Jones M.E., LaCroix R.E., Zeigler J., Ying S.C., Nico P.S., Keiluweit M. Enzymes, Manganese, or Iron? Drivers of Oxidative Organic Matter Decomposition in Soils. Environ. Sci. Technol. 2020;54:14114–14123. doi: 10.1021/acs.est.0c04212. PubMed DOI

Nicholson K., Hein J.R., Bühn B., Dasgupta S. Manganese Mineralization: Geochemistry And Mineralogy of Terrestrial And Marine Deposits. Geological Society; London, UK: 1997. p. 370.

Kabata-Pendias A. Trace Elements in Soils and Plants, Fourth Edition. Taylor & Francis; Abingdon, UK: 2010.

Fageria N.K., Baligar V.C., Clark R.B. Micronutrients in Crop Production. In: Sparks D.L., editor. Advances in Agronomy. Volume 77. Academic Press; Cambridge, MA, USA: 2002. pp. 185–268.

Howe P.D., Malcolm H.M., Dobson S. Manganese and Its Compounds: Environmental Aspects. World Health Organization; Geneva, Switzerland: 2004. p. 63.

Tebo B.M., He L.M. Microbially Mediated Oxidative Precipitation Reactions. ACS Symp. Ser. 1999;715:393–414.

Tan W., Lu S., Liu F., Feng X., He J., Koopal L. Determination of the point-of-zero charge of manganese oxides with different methods including an improved salt titration method. Soil. Sci. 2008;173:277–286. doi: 10.1097/SS.0b013e31816d1f12. DOI

Feng X.H., Zhai L.M., Tan W.F., Liu F., He J.Z. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ. Pollut. 2007;147:366–373. doi: 10.1016/j.envpol.2006.05.028. PubMed DOI

Kim J.G., Dixon J.B., Chusuei C.C., Deng Y. Oxidation of Chromium (III) to (VI) by Manganese Oxides. Soil Sci. Soc. Am. J. 2002;66:306–315. doi: 10.2136/sssaj2002.3060. DOI

Healy T.W., Herring A.P., Fuerstenau D.W. The effect of crystal structure on the surface properties of a series of manganese dioxides. J. Colloid. Interface Sci. 1966;21:435–444. doi: 10.1016/0095-8522(66)90008-0. DOI

Zhang S., Chen S., Liu F., Li J., Liang X., Chu S., Xiang Q., Huang C., Yin H. Effects of Mn average oxidation state on the oxidation behaviors of As (III) and Cr (III) by vernadite. Appl. Geochem. 2018;94:35–45. doi: 10.1016/j.apgeochem.2018.05.002. DOI

Stumm W. Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems. Wiley; Chichester, UK: 1992. p. 448.

Mellin T.A., Lei G. Stabilization of 10A-manganates by interlayer cations and hydrotemral treatment: Implications for the mineralogy of marine manganese concentrations. Mar. Geol. 1993;115:67–83. doi: 10.1016/0025-3227(93)90075-7. DOI

Burns R.G., Burns V.M., Stockman H.W. The todorkite-buserite problem: Further considerations. Am. Mineral. 1985;70:205–208.

Mc Kenzie R.M. Minerals in Soil Environments. Soil Science Society of America; Madison, WI, USA: 1989. Manganese Oxides and Hydroxides; pp. 439–465.

Cui H.-J., Feng X.-H., He J.-Z., Tan W.-F., Liu F. Effects of reaction conditions on the formation of todorokite at atmospheric pressure. Clays Clay Miner. 2006;54:605–615. doi: 10.1346/CCMN.2006.0540507. DOI

Cui H., Liu X., Tan W., Feng X., Liu F., Ruan H.D. Influence of Mn (III) availability on the phase transformation from layered buserite to tunnel-structured todorokite. Clays Clay Miner. 2008;56:397–403. doi: 10.1346/CCMN.2008.0560401. DOI

Negra C., Ross D.S., Lanzirotti A. Oxidizing Behavior of Soil Manganese. Soil Sci. Soc. Am. J. 2005;69:87–95. doi: 10.2136/sssaj2005.0087a. DOI

Marafatto F.F., Strader M.L., Gonzalez-Holguera J., Schwartzberg A., Gilbert B., Peña J. Rate and mechanism of the photoreduction of birnessite (MnO2) nanosheets. Proc. Natl. Acad. Sci. USA. 2015;112:4600–4605. doi: 10.1073/pnas.1421018112. PubMed DOI PMC

Golden D.C., Chen C.C., Dixon J.B. Transformation of Birnessite to Buserite, Todorokite, and Manganite under Mild Hydrothermal Treatment. Clays Clay Miner. 1987;35:271–280. doi: 10.1346/CCMN.1987.0350404. DOI

Liu J., Makwana V., Cai J., Suib S.L., Aindow M. Effects of Alkali Metal and Ammonium Cation Templates on Nanofibrous Cryptomelane-type Manganese Oxide Octahedral Molecular Sieves (OMS-2) J. Phys. Chem. B. 2003;107:9185–9194. doi: 10.1021/jp0300593. DOI

Ruijter G.J., Panneman H., Visser J. Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger. Biochim. Biophys. Acta. 1997;1334:317–326. doi: 10.1016/S0304-4165(96)00110-9. PubMed DOI

Munn R.E. Encyclopedia of Global Environmental Change. Wiley; Chichester, UK: 2002.

Borch T., Kretzschmar R., Kappler A., Cappellen P.V., Ginder-Vogel M., Voegelin A., Campbell K. Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. Environ. Sci. Technol. 2010;44:15–23. doi: 10.1021/es9026248. PubMed DOI

Gadd G.M. Fungal Production of Citric and Oxalic Acid: Importance in Metal Speciation, Physiology and Biogeochemical Processes. In: Poole R.K., editor. Advances in Microbial Physiology. Volume 41. Academic Press; Cambridge, MA, USA: 1999. pp. 47–92. PubMed

Francis C.A., Co E.M., Tebo B.M. Enzymatic manganese (II) oxidation by a marine alpha-proteobacterium. Appl. Environ. Microbiol. 2001;67:4024–4029. doi: 10.1128/AEM.67.9.4024-4029.2001. PubMed DOI PMC

Mayanna S., Peacock C.L., Schäffner F., Grawunder A., Merten D., Kothe E., Büchel G. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. Chem. Geol. 2015;402:6–17. doi: 10.1016/j.chemgeo.2015.02.029. DOI

Morgan J.J. Kinetics of reaction between O2 and Mn (II) species in aqueous solutions. Geochim. Cosmochim. Acta. 2005;69:35–48. doi: 10.1016/j.gca.2004.06.013. DOI

Zhang H., Li Y., Wang X., Lu A., Ding H., Zeng C., Wang X., Wu X., Nie Y., Wang C. Aerobic and anaerobic reduction of birnessite by a novel Dietzia strain. Geochem. Trans. 2015;16:11. doi: 10.1186/s12932-015-0026-0. PubMed DOI PMC

Farkas B., Kolenčík M., Hain M., Dobročka E., Kratošová G., Bujdoš M., Feng H., Deng Y., Yu Q., Illa R., et al. Aspergillus niger Decreases Bioavailability of Arsenic (V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals. J. Fungi. 2020;6:270. doi: 10.3390/jof6040270. PubMed DOI PMC

Cerrato J.M., Falkinham J.O., Dietrich A.M., Knocke W.R., McKinney C.W., Pruden A. Manganese-oxidizing and -reducing microorganisms isolated from biofilms in chlorinated drinking water systems. Water Res. 2010;44:3935–3945. doi: 10.1016/j.watres.2010.04.037. PubMed DOI

Saratovsky I., Wightman P.G., Pastén P.A., Gaillard J.-F., Poeppelmeier K.R. Manganese Oxides:  Parallels between Abiotic and Biotic Structures. J. Am. Chem. Soc. 2006;128:11188–11198. doi: 10.1021/ja062097g. PubMed DOI

Piazza A., Ciancio Casalini L., Pacini V.A., Sanguinetti G., Ottado J., Gottig N. Environmental Bacteria Involved in Manganese (II) Oxidation and Removal From Groundwater. Front. Microbiol. 2019;10:119. doi: 10.3389/fmicb.2019.00119. PubMed DOI PMC

Francis C.A., Tebo B.M. Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals. J. Mol. Microbiol. Biotechnol. 1999;1:71–78. PubMed

Francis C.A., Casciotti K.L., Tebo B.M. Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. strain SG-1. Arch. Microbiol. 2002;178:450–456. doi: 10.1007/s00203-002-0472-9. PubMed DOI

Hoegger P.J., Kilaru S., James T.Y., Thacker J.R., Kües U. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J. 2006;273:2308–2326. doi: 10.1111/j.1742-4658.2006.05247.x. PubMed DOI

Emerson S., Kalhorn S., Jacobs L., Tebo B.M., Nealson K.H., Rosson R.A. Environmental oxidation rate of manganese (II): Bacterial catalysis. Geochim. Cosmochim. Acta. 1982;46:1073–1079. doi: 10.1016/0016-7037(82)90060-6. DOI

Nicholson W.L., Munakata N., Horneck G., Melosh H.J., Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 2000;64:548–572. doi: 10.1128/MMBR.64.3.548-572.2000. PubMed DOI PMC

Webb S.M., Dick G.J., Bargar J.R., Tebo B.M. Evidence for the presence of Mn (III) intermediates in the bacterial oxidation of Mn (II) Proc. Natl. Acad. Sci. USA. 2005;102:5558–5563. doi: 10.1073/pnas.0409119102. PubMed DOI PMC

Kostka J.E., Luther G.W., Nealson K.H. Chemical and biological reduction of Mn (III)-pyrophosphate complexes: Potential importance of dissolved Mn (III) as an environmental oxidant. Geochim. Cosmochim. Acta. 1995;59:885–894. doi: 10.1016/0016-7037(95)00007-0. DOI

Hastings D., Emerson S. Oxidation of manganese by spores of a marine bacillus: Kinetic and thermodynamic considerations. Geochim. Cosmochim. Acta. 1986;50:1819–1824. doi: 10.1016/0016-7037(86)90141-9. DOI

Tebo B.M., Geszvain K., Lee S.W. Geomicrobiology: Molecular and Environmental Perspective. Springer; Dordrecht, The Netherlands: 2010. The molecular geomicrobiology of bacterial manganese(II) oxidation; pp. 285–308. DOI

Faulkner K.M., Stevens R.D., Fridovich I. Characterization of Mn (III) Complexes of Linear and Cyclic Desferrioxamines as Mimics of Superoxide Dismutase Activity. Arch. Biochem. Biophys. 1994;310:341–346. doi: 10.1006/abbi.1994.1176. PubMed DOI

Parker D., Morita T., Mozafarzadeh M.L., Verity R., Verity R., McCarthy J.K., Tebo B. Inter-relationships of MnO2 precipitation, siderophore–Mn (III) complex formation, siderophore degradation, and iron limitation in Mn(II)-oxidizing bacterial cultures. Geochim. Cosmochim. Acta. 2007;71:5672–5683. doi: 10.1016/j.gca.2007.03.042. DOI

Duckworth O.W., Sposito G. Siderophore−Manganese (III) Interactions II. Manganite Dissolution Promoted by Desferrioxamine B. Environ. Sci. Technol. 2005;39:6045–6051. doi: 10.1021/es050276c. PubMed DOI

Mawji E., Gledhill M., Milton J.A., Tarran G.A., Ussher S., Thompson A., Wolff G.A., Worsfold P.J., Achterberg E.P. Hydroxamate Siderophores: Occurrence and Importance in the Atlantic Ocean. Environ. Sci. Technol. 2008;42:8675–8680. doi: 10.1021/es801884r. PubMed DOI

Holmström S.J.M., Lundström U.S., Finlay R.D., van Hees P.A.W. Siderophores in forest soil solution. Biogeochemistry. 2005;71:247–258. doi: 10.1007/s10533-005-0015-y. DOI

Dubinina G.A. Functional significance of bivalent iron and manganese oxidation in Leptothrix pseudoochraceae. Mikrobiologiia. 1978;47:783–789. PubMed

Hansel C.M., Zeiner C.A., Santelli C.M., Webb S.M. Mn (II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proc. Natl. Acad. Sci. USA. 2012;109:12621. doi: 10.1073/pnas.1203885109. PubMed DOI PMC

Glenn J.K., Akileswaran L., Gold M.H. Mn (II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 1986;251:688–696. doi: 10.1016/0003-9861(86)90378-4. PubMed DOI

Wariishi H., Valli K., Gold M.H. Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J. Biol. Chem. 1992;267:23688–23695. doi: 10.1016/S0021-9258(18)35893-9. PubMed DOI

Perez J., Jeffries T.W. Roles of manganese and organic acid chelators in regulating lignin degradation and biosynthesis of peroxidases by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 1992;58:2402–2409. doi: 10.1128/aem.58.8.2402-2409.1992. PubMed DOI PMC

Nilsson T., Daniel G. Chemistry and Microscopy of Wood Decay by Some Higher Ascomycetes. Holzforschung. 1989;43:11–18. doi: 10.1515/hfsg.1989.43.1.11. DOI

Ehrlich H.L. Manganese as an energy source for bacteria. Environ. Biogeochem. 1976;2:633–644.

Yu H., Leadbetter J.R. Bacterial chemolithoautotrophy via manganese oxidation. Nature. 2020;583:453–458. doi: 10.1038/s41586-020-2468-5. PubMed DOI PMC

Santelli C.M., Pfister D.H., Lazarus D., Sun L., Burgos W.D., Hansel C.M. Promotion of Mn (II) oxidation and remediation of coal mine drainage in passive treatment systems by diverse fungal and bacterial communities. Appl. Environ. Microbiol. 2010;76:4871–4875. doi: 10.1128/AEM.03029-09. PubMed DOI PMC

Schlosser D., Höfer C. Laccase-catalyzed oxidation of Mn(2+) in the presence of natural Mn(3+) chelators as a novel source of extracellular H(2)O(2) production and its impact on manganese peroxidase. Appl. Environ. Microbiol. 2002;68:3514–3521. doi: 10.1128/AEM.68.7.3514-3521.2002. PubMed DOI PMC

Hansard S.P., Easter H.D., Voelker B.M. Rapid Reaction of Nanomolar Mn (II) with Superoxide Radical in Seawater and Simulated Freshwater. Environ. Sci. Technol. 2011;45:2811–2817. doi: 10.1021/es104014s. PubMed DOI

Luther G.W., III The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions. Aquat. Geochem. 2010;16:395–420. doi: 10.1007/s10498-009-9082-3. DOI

Aguirre J., Ríos-Momberg M., Hewitt D., Hansberg W. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 2005;13:111–118. doi: 10.1016/j.tim.2005.01.007. PubMed DOI

Scott B., Eaton C.J. Role of reactive oxygen species in fungal cellular differentiations. Curr. Opin. Microbiol. 2008;11:488–493. doi: 10.1016/j.mib.2008.10.008. PubMed DOI

Webb S.M., Tebo B.M., Bargar J.R. Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp. strain SG-1. Am. Mineral. 2005;90:1342–1357. doi: 10.2138/am.2005.1669. DOI

Tebo B.M., Ghiorse W.C., Van Waasbergen L.G., Siering P.L., Caspi R. Bacterially mediated mineral formation: Insights into manganese(h) oxidation from molecular genetic and biochemical studies. Rev. Mineral. 1997;35:259–266.

Learman D., Voelker B., Vazquez-Rodriguez A., Hansel C. Formation of manganese oxides by bacterially generated superoxide. Nat. Geosci. 2011;4:95–98. doi: 10.1038/ngeo1055. DOI

Zeiner C.A., Purvine S.O., Zink E., Wu S., Paša-Tolić L., Chaput D.L., Santelli C.M., Hansel C.M. Mechanisms of Manganese (II) Oxidation by Filamentous Ascomycete Fungi Vary With Species and Time as a Function of Secretome Composition. Front. Microbiol. 2021;12:610497. doi: 10.3389/fmicb.2021.610497. PubMed DOI PMC

Voelker B.M., Sedlak D.L., Zafiriou O.C. Chemistry of Superoxide Radical in Seawater:  Reactions with Organic Cu Complexes. Environ. Sci. Technol. 2000;34:1036–1042. doi: 10.1021/es990545x. DOI

Malagnac F., Lalucque H., Lepère G., Silar P. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal. Genet. Biol. 2004;41:982–997. doi: 10.1016/j.fgb.2004.07.008. PubMed DOI

Santelli C.M., Webb S.M., Dohnalkova A.C., Hansel C.M. Diversity of Mn oxides produced by Mn (II)-oxidizing fungi. Geochim. Cosmochim. Acta. 2011;75:2762–2776. doi: 10.1016/j.gca.2011.02.022. DOI

de la Torre M.A., Gomez-Alarcon G. Manganese and iron oxidation by fungi isolated from building stone. Microb. Ecol. 1994;27:177–188. doi: 10.1007/BF00165816. PubMed DOI

Hinkle M.A.G., Post J.E., Peralta J., Santelli C.M. Impacts of sulfonic acids on fungal manganese oxide production. Geochim. Cosmochim. Acta. 2023;341:164–182. doi: 10.1016/j.gca.2022.11.032. DOI

Coates J.D., Ellis D.J., Gaw C.V., Lovley D.R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Evol. Microbiol. 1999;49:1615–1622. doi: 10.1099/00207713-49-4-1615. PubMed DOI

Krishnan K.P., Sinha R.K., Krishna K., Nair S., Singh S.M. Microbially mediated redox transformations of manganese (II) along with some other trace elements: A study from Antarctic lakes. Polar Biol. 2009;32:1765–1778. doi: 10.1007/s00300-009-0676-4. DOI

Ruppel D.T., Dexter S.C., Luther Iii G.W. Role of manganese dioxide in corrosion in the presence of natural biofilms. Corrosion. 2001;57:863–873. doi: 10.5006/1.3290313. DOI

Lin H., Szeinbaum N.H., DiChristina T.J., Taillefert M. Microbial Mn (IV) reduction requires an initial one-electron reductive solubilization step. Geochim. Cosmochim. Acta. 2012;99:179–192. doi: 10.1016/j.gca.2012.09.020. DOI

DiChristina T.J., Moore C.M., Haller C.A. Dissimilatory Fe (III) and Mn (IV) Reduction by Shewanella putrefaciens Requires ferE, a Homolog of the pulE (gspE) Type II Protein Secretion Gene. J. Bacteriol. 2002;184:142. doi: 10.1128/JB.184.1.142-151.2002. PubMed DOI PMC

Taillefert M., Beckler J.S., Carey E., Burns J.L., Fennessey C.M., DiChristina T.J. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe (III) oxides. J. Inorg. Biochem. 2007;101:1760–1767. doi: 10.1016/j.jinorgbio.2007.07.020. PubMed DOI

Newman D.K., Kolter R. A role for excreted quinones in extracellular electron transfer. Nature. 2000;405:94–97. doi: 10.1038/35011098. PubMed DOI

Myers C.R., Nealson K.H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 1988;240:1319–1321. doi: 10.1126/science.240.4857.1319. PubMed DOI

Henkel J.V., Dellwig O., Pollehne F., Herlemann D.P.R., Leipe T., Schulz-Vogt H.N. A bacterial isolate from the Black Sea oxidizes sulfide with manganese (IV) oxide. Proc. Natl. Acad. Sci. USA. 2019;116:12153–12155. doi: 10.1073/pnas.1906000116. PubMed DOI PMC

Madison A.S., Tebo B.M., Mucci A., Sundby B., Luther G.W., 3rd Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science. 2013;341:875–878. doi: 10.1126/science.1241396. PubMed DOI

Finke N., Vandieken V., Jørgensen B.B. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol. Ecol. 2007;59:10–22. doi: 10.1111/j.1574-6941.2006.00214.x. PubMed DOI

Szeinbaum N., Lin H., Brandes J.A., Taillefert M., Glass J.B., DiChristina T.J. Microbial manganese(III) reduction fuelled by anaerobic acetate oxidation. Environ. Microbiol. 2017;19:3475–3486. doi: 10.1111/1462-2920.13829. PubMed DOI PMC

Duckworth O.W., Sposito G. Siderophore−Manganese (III) Interactions. I. Air-Oxidation of Manganese (II) Promoted by Desferrioxamine B. Environ. Sci. Technol. 2005;39:6037–6044. doi: 10.1021/es050275k. PubMed DOI

Oldham V.E., Mucci A., Tebo B.M., Luther G.W. Soluble Mn (III)–L complexes are abundant in oxygenated waters and stabilized by humic ligands. Geochim. Cosmochim. Acta. 2017;199:238–246. doi: 10.1016/j.gca.2016.11.043. DOI

Yakushev E., Pakhomova S.V., Sørenson K., Skei J. Importance of the different manganese species in the formation of water column redox zones: Observations and modeling. Mar. Chem. 2009;117:59–70. doi: 10.1016/j.marchem.2009.09.007. DOI

Trouwborst R.E., Clement B.G., Tebo B.M., Glazer B.T., Luther G.W., 3rd Soluble Mn (III) in suboxic zones. Science. 2006;313:1955–1957. doi: 10.1126/science.1132876. PubMed DOI

Sayer J.A., Gadd G.M. Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol. Res. 1997;101:653–661. doi: 10.1017/S0953756296003140. DOI

Stone A.T., Morgan J.J. Reduction and dissolution of manganese (III) and manganese (IV) oxides by organics: 2. Survey of the reactivity of organics. Environ. Sci. Technol. 1984;18:617–624. doi: 10.1021/es00126a010. PubMed DOI

Polák F., Urík M., Matúš P. Low molecular weight organic acids in soil environment. Chem. Listy. 2019;113:307–314.

Mohanty S., Ghosh S., Nayak S., Das A.P. Bioleaching of manganese by Aspergillus sp. isolated from mining deposits. Chemosphere. 2017;172:302–309. doi: 10.1016/j.chemosphere.2016.12.136. PubMed DOI

Nico P.S., Anastasio C., Zasoski R.J. Rapid photo-oxidation of Mn (II) mediated by humic substances. Geochim. Cosmochim. Acta. 2002;66:4047–4056. doi: 10.1016/S0016-7037(02)01001-3. DOI

Ren H.-T., Jia S.-Y., Liu Y., Wu S.-H., Han X. Effects of Mn(II) on the sorption and mobilization of As (V) in the presence of hematite. J. Hazard. Mater. 2012;217–218:301–306. doi: 10.1016/j.jhazmat.2012.03.032. PubMed DOI

Acharya C., Kar R.N., Sukla L.B. Studies on reaction mechanism of bioleaching of manganese ore. Miner. Eng. 2003;16:1027–1030. doi: 10.1016/S0892-6875(03)00239-5. DOI

Srimekanond A., Thangavelu V.J., Madgwick J.C. Thermophilic bacterial leaching of manganese dioxide. J. Ind. Microbiol. 1992;10:217–220. doi: 10.1007/BF01569769. DOI

Acharya C., Kar R., Sukla L., Misra V.N. Fungal leaching of manganese ore. Trans. Indian Inst. Met. 2004;57:501–508.

Xyla A.G., Sulzberger B., Luther G.W., Hering J.G., Van Cappellen P., Stumm W. Reductive dissolution of manganese(III, IV) (hydr)oxides by oxalate: The effect of pH and light. Langmuir. 1992;8:95–103. doi: 10.1021/la00037a019. DOI

Godunov E., Izotov A., Gorichev I. Dissolution of Manganese Oxides of Various Compositions in Sulfuric Acid Solutions Studied by Kinetic Methods. Inorg. Mater. 2018;54:66–71. doi: 10.1134/S002016851801003X. DOI

Artamonova I., Gorichev I., Godunov E. Kinetics of Manganese Oxides Dissolution in Sulphuric Acid Solutions Containing Oxalic Acid. Engineering. 2013;05:714–719. doi: 10.4236/eng.2013.59085. DOI

Mehta K.D., Das C., Pandey B.D. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger. Hydrometallurgy. 2010;105:89–95. doi: 10.1016/j.hydromet.2010.08.002. DOI

Keshavarz S., Faraji F., Rashchi F., Mokmeli M. Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies. J. Environ. Manag. 2021;285:112153. doi: 10.1016/j.jenvman.2021.112153. PubMed DOI

Marshall K.C. Chapter 5 Biogeochemistry of Manganese Minerals. In: Trudinger P.A., Swaine D.J., editors. Study Environment Science. Volume 3. Elsevier; Amsterdam, The Netherlands: 1979. pp. 253–292.

Atencio D., Coutinho J.M.V., Graeser S., Matioli P.A., Filho L.A.D.M. Lindbergite, a new Mn oxalate dihydrate from Boca Rica mine, Galiléia, Minas Gerais, Brazil, and other occurrences. Am. Mineral. 2004;89:1087–1091. doi: 10.2138/am-2004-0721. DOI

Goldberg E.D. Marine Geochemistry 1. Chemical Scavengers of the Sea. J. Geol. 1954;62:249–265. doi: 10.1086/626161. DOI

Tani Y., Ohashi M., Miyata N., Seyama H., Iwahori K., Soma M. Sorption of Co (II), Ni (II), and Zn (II) on biogenic manganese oxides produced by a Mn-oxidizing fungus, strain KR21-2. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2004;39:2641–2660. doi: 10.1081/ESE-200027021. PubMed DOI

Gupta K., Maity A., Ghosh U.C. Manganese associated nanoparticles agglomerate of iron (III) oxide: Synthesis, characterization and arsenic (III) sorption behavior with mechanism. J. Hazard. Mater. 2010;184:832–842. doi: 10.1016/j.jhazmat.2010.08.117. PubMed DOI

Nemček L., Hagarová I. The Recent Strategies Employed in Chemical Analysis of Contaminated Waters, Sediments and Soils as a Part of the Remediation Process: Extraction. In: Prasad R., editor. Environmental Pollution and Remediation. Springer; Singapore: 2021. pp. 131–173.

Clarke C.E., Kielar F., Talbot H.M., Johnson K.L. Oxidative Decolorization of Acid Azo Dyes by a Mn Oxide Containing Waste. Environ. Sci. Technol. 2010;44:1116–1122. doi: 10.1021/es902305e. PubMed DOI

Han B., Zhang M., Zhao D., Feng Y. Degradation of aqueous and soil-sorbed estradiol using a new class of stabilized manganese oxide nanoparticles. Water Res. 2015;70:288–299. doi: 10.1016/j.watres.2014.12.017. PubMed DOI

Zhang H., Huang C.H. Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide. Environ. Sci. Technol. 2005;39:4474–4483. doi: 10.1021/es048166d. PubMed DOI

Clarke C.E., Kielar F., Johnson K.L. The oxidation of acid azo dye AY 36 by a manganese oxide containing mine waste. J. Hazard. Mater. 2013;246–247:310–318. doi: 10.1016/j.jhazmat.2012.12.018. PubMed DOI

Grangeon S., Bataillard P., Coussy S. Environmental Soil Remediation and Rehabilitation. Springer; Cham, Switzerland: 2020. The Nature of Manganese Oxides in Soils and Their Role as Scavengers of Trace Elements: Implication for Soil Remediation; pp. 399–429.

Mahato T.H., Prasad G.K., Singh B.B., Batra K., Ganesan K. Mesoporous manganese oxide nanobelts for decontamination of sarin, sulphur mustard and chloro ethyl ethyl sulphide. Microporous Mesoporous Mater. 2010;132:15–21. doi: 10.1016/j.micromeso.2009.05.035. DOI

Šťastný M., Stengl V., Henych J., Tolasz J., Vomáčka P., Ederer J. Mesoporous manganese oxide for the degradation of organophosphates pesticides. J. Mater. Sci. 2016;51:2634–2642. doi: 10.1007/s10853-015-9577-9. DOI

Lin K., Liu W., Gan J. Oxidative Removal of Bisphenol A by Manganese Dioxide: Efficacy, Products, and Pathways. Environ. Sci. Technol. 2009;43:3860–3864. doi: 10.1021/es900235f. PubMed DOI

Gao J., Hedman C., Liu C., Guo T., Pedersen J.A. Transformation of sulfamethazine by manganese oxide in aqueous solution. Environ. Sci. Technol. 2012;46:2642–2651. doi: 10.1021/es202492h. PubMed DOI

Lu Z., Lin K., Gan J. Oxidation of bisphenol F (BPF) by manganese dioxide. Environ. Pollut. 2011;159:2546–2551. doi: 10.1016/j.envpol.2011.06.016. PubMed DOI

Johnson D.L., Pilson M.E. The oxidation of arsenite in seawater. Environ. Lett. 1975;8:157–171. doi: 10.1080/00139307509437429. PubMed DOI

Butler E.C., Chen L., Hansel C.M., Krumholz L.R., Elwood Madden A.S., Lan Y. Biological versus mineralogical chromium reduction: Potential for reoxidation by manganese oxide. Environ. Sci. Process. Impacts. 2015;17:1930–1940. doi: 10.1039/C5EM00286A. PubMed DOI

Tani Y., Miyata N., Iwahori K., Soma M., Tokuda S.-i., Seyama H., Theng B.K.G. Biogeochemistry of manganese oxide coatings on pebble surfaces in the Kikukawa River System, Shizuoka, Japan. Appl. Geochem. 2003;18:1541–1554. doi: 10.1016/S0883-2927(03)00075-1. DOI

Wadsley A.D. A Hydrous Manganese Oxide with Exchange Properties. J. Am. Chem. Soc. 1950;72:1781–1784. doi: 10.1021/ja01160a104. DOI

Yousaf A.B., Khan R., Imran M., Fasehullah M., Zeb A., Zaidi S.J., Kasak P. Carbon nitride embedded MnO2 nanospheres decorated with low-content Pt nanoparticles as highly efficient and durable electrode material for solid state supercapacitors. J. Electroanal. Chem. 2017;801:84–91. doi: 10.1016/j.jelechem.2017.07.035. DOI

Gupta K., Bhattacharya S., Chattopadhyay D., Mukhopadhyay A., Biswas H., Dutta J., Ray N.R., Ghosh U.C. Ceria associated manganese oxide nanoparticles: Synthesis, characterization and arsenic (V) sorption behavior. Chem. Eng. J. 2011;172:219–229. doi: 10.1016/j.cej.2011.05.092. DOI

Michálková Z., Komárek M., Šillerová H., Della Puppa L., Joussein E., Bordas F., Vaněk A., Vaněk O., Ettler V. Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of Cd, Cu and Pb in contaminated soils. J. Environ. Manag. 2014;146:226–234. doi: 10.1016/j.jenvman.2014.08.004. PubMed DOI

Xie W., Liang Q., Qian T., Zhao D. Immobilization of selenite in soil and groundwater using stabilized Fe–Mn binary oxide nanoparticles. Water Res. 2015;70:485–494. doi: 10.1016/j.watres.2014.12.028. PubMed DOI

Das J., Das D., Dash G.P., Parida K.M. Studies on Mg/Fe hydrotalcite-like-compound (HTlc) I. Removal of inorganic selenite (SeO3(2−)) from aqueous medium. J. Colloid. Interface Sci. 2002;251:26–32. doi: 10.1006/jcis.2002.8319. PubMed DOI

Maier K.J., Foe C., Knight A.W. Comparative toxicity of selenate, selenite, seleno-DL-methionine and selen-Dl-cystine to Daphnia magna. Environ. Toxicol. Chem. 1993;12:755–763. doi: 10.1002/etc.5620120417. DOI

Li Z., Yuan Y., Ma L., Zhang Y., Jiang H., He J., Hu Y. Simultaneous Kinetics of Selenite Oxidation and Sorption on δ-MnO(2) in Stirred-Flow Reactors. Int. J. Environ. Res. Public Health. 2021;18:2902. doi: 10.3390/ijerph18062902. PubMed DOI PMC

O’Reilly S.E., Hochella M.F. Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim. Cosmochim. Acta. 2003;67:4471–4487. doi: 10.1016/S0016-7037(03)00413-7. DOI

Wang Y., Feng X., Villalobos M., Tan W., Liu F. Sorption behavior of heavy metals on birnessite: Relationship with its Mn average oxidation state and implications for types of sorption sites. Chem. Geol. 2012;292–293:25–34. doi: 10.1016/j.chemgeo.2011.11.001. DOI

Liu C., Zhang L., Li F., Wang Y., Gao Y., Li X., Cao W., Feng C., Dong J., Sun L. Dependence of Sulfadiazine Oxidative Degradation on Physicochemical Properties of Manganese Dioxides. Ind. Eng. Chem. Res. 2009;48:10408–10413. doi: 10.1021/ie900812j. DOI

Frank-Kamenetskaya O., Zelenskaya M., Izatulina A., Gurzhiy V., Rusakov A., Vlasov D. Oxalate formation by Aspergillus niger on minerals of manganese ores. Am. Mineral. 2022;107:100–109. doi: 10.2138/am-2021-7651. DOI

Wei Z., Hillier S., Gadd G.M. Biotransformation of manganese oxides by fungi: Solubilization and production of manganese oxalate biominerals. Environ. Microbiol. 2012;14:1744–1753. doi: 10.1111/j.1462-2920.2012.02776.x. PubMed DOI

Milová-Žiaková B., Urík M., Boriová K., Bujdoš M., Kolenčík M., Mikušová P., Takáčová A., Matúš P. Fungal solubilization of manganese oxide and its significance for antimony mobility. Int. Biodeterior. Biodegrad. 2016;114:157–163. doi: 10.1016/j.ibiod.2016.06.011. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace