Insights Into Manganese Solubilizing Bacillus spp. for Improving Plant Growth and Manganese Uptake in Maize
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34795682
PubMed Central
PMC8593242
DOI
10.3389/fpls.2021.719504
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus spp., Zea mays, manganese oxide, manganese reducing bacteria, minerals solubilization, rhizobacteria,
- Publikační typ
- časopisecké články MeSH
Manganese (Mn) is an essential micronutrient for plant growth that is involved in the structure of photosynthetic proteins and enzymes. Mn deficiency is widespread mainly in dry, calcareous, and sandy soil, which leads to a significant decrease in crop yield. Mn-reducing bacteria promote the solubilization of Mn minerals, thus increasing Mn availability in soil. The present study aimed to assess the Mn solubilizing ability and plant growth-promoting potential of Bacillus spp. strains for maize plants with insoluble Mn compounds. Several Mn-solubilizing bacterial (MSB) strains were isolated from the maize rhizosphere using nutrient agar media amended with 50 mM MnO2. These strains were screened based on qualitative and quantitative solubilization of Mn, phosphorus, potassium, and zinc and production of ammonia. The majority of MSB strains were positive for catalase, protease, amylase, and oxidase activity, while more than 60% of tested strains were positive for lipase activity, and the production of indole-3-acetic acid and siderophores. Forty-five percent of the tested strains also showed solubilization of potassium. All the MSB strains were evaluated for their ability to promote plant growth and Mn uptake in the presence of MnO2 under axenic sand culture conditions. The results revealed that inoculation with MSB strains under sand culture significantly improved the growth of maize seedlings except for strains ASH7, ASH10, and ASH12. Comparatively, strains ASH6, ASH11, ASH19, ASH20, and ASH22 demonstrated a better increase in plant growth, fresh and dry biomass, and Mn uptake in roots and shoots than the other strains tested. All of these strains were identified as Bacillus spp. through 16S rRNA partial gene sequencing. Maize inoculation with these selected identified MSB strains also resulted in an increase in maize growth and nutrient uptake in maize roots and shoots under soil culture conditions in the presence of native soil Mn. The current study highlights the importance of MSB strain inoculation which could be a potential bioinoculants to promote plant growth under Mn deficiency.
College of Life Sciences Yan'an University Yan'an China
Department of Soil Science The Islamia University of Bahawalpur Bahawalpur Pakistan
Institute of Molecular Biology and Biotechnology The University of Lahore Lahore Pakistan
Institute of Soil and Environmental Sciences University of Agriculture Faisalabad Pakistan
SoWa Research Infrastructure Biology Centre CAS České Budějovice Czechia
Zobrazit více v PubMed
Ahmad I., Ahmad M., Hussain A., Jamil M. (2020). Integrated use of phosphate-solubilizing Bacillus subtilis strain IA6 and zinc-solubilizing Bacillus sp. strain IA16: a promising approach for improving cotton growth. Folia Microbiol. 66 115–125. 10.1007/s12223-020-00831-3 PubMed DOI
Ahmad M., Naseer I., Hussain A., Mumtaz M. Z., Mustafa A., Hilger T. H., et al. (2019). Appraising endophyte-plant symbiosis for improved growth, nodulation, nitrogen fixation and abiotic stress tolerance: an experimental investigation with chickpea (Cicer arietinum L.). Agronomy 9:621. 10.3390/agronomy9100621 DOI
Baglin E., Noble E., Lamsphire D., Eisele J. A. (1992). Solubilization of manganese from ores by heterotrophic micro-organisms. Hydrometallurgy 29 131–144. 10.1016/0304-386X(92)90009-O DOI
Breakwell D., MacDonald B., Woolverton C., Smith K., Robison R. (2007). Colony Morphology Protocol. Available online at: https://www.asmscience.org/content/education/protocol/protocol.3136?crawler=redirect (accessed January 12, 2021)
Bric J. M., Bostock R. M., Silverstonet S. E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane downloaded from. Appl. Environ. Microbiol. 57 535–538. PubMed PMC
Bromfield S. M., David D. J. (1976). Sorption and oxidation of manganous ions and reduction of manganese oxide by cell suspensions of a manganese oxidizing bacterium. Soil Biol. Biochem. 8 37–43. 10.1016/0038-0717(76)90019-5 DOI
Bunt J. S., Rovira A. D. (1955). Microbiological studies of some subantarctic soils. J. Soil Sci. 6 119–128. 10.1111/j.1365-2389.1955.tb00836.x DOI
Campbell L. C., Nable R. O. (1988). “Physiological functions of manganese in plants,” in Manganese in Soils and Plants. Developments in Plant and Soil Sciences, eds Graham R. D., Hannam R. J., Uren N. C. (Dordrecht: Springer; ), 139–154. 10.1007/978-94-009-2817-6_11 DOI
Cappuccino J., Welsh C. (2017). Microbiology: A Laboratory Manual, 11th Edn. New York: Pearson.
Cheneby D., Perrez S., Devroe C., Hallet S., Couton Y., Bizouard F., et al. (2004). Denitrifying bacteria in bulk and maize-rhizospheric soil: diversity and N2O-reducing abilities. Can. J. Microbiol. 50 469–474. 10.1139/w04-037 PubMed DOI
Das A. P., Sukla L. B., Pradhan N. (2012). Microbial recovery of manganese using Staphylococcus epidermidis. Int. J. Nonferrous Metallurgy 1 9–12. 10.4236/ijnm.2012.12002 DOI
Dinesh R., Srinivasan V., Hamza S., Sarathambal C., Gowda S. J. A., Ganeshamurthy A. N., et al. (2018). Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, soil available Zn and plant Zn content. Geoderma 321 173–186. 10.1016/j.geoderma.2018.02.013 DOI
Di-Ruggiero J., Gounot A. M. (1990). Microbial manganese reduction mediated by bacterial strains isolated from aquifer sediments. Microbial. Ecol. 20 53–63. 10.1007/BF02543866 PubMed DOI
Etesami H., Emami S., Alikhani H. (2017). Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects a review. J. Soil Sci. Plant 17 897–911. 10.4067/S0718-95162017000400005 PubMed DOI
Ghosh S., Mohanty S., Nayak S., Sukla L. B., Das A. P. (2016). Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits. J. Basic Microbiol. 56 254–262. 10.1002/jobm.201500477 PubMed DOI
Gong X., Qu C., Liu C., Hong M., Wang L., Hong F. (2011). Effects of manganese deficiency and added cerium on nitrogen metabolism of maize. Biol. Trace Element Res. 144 1240–1250. 10.1007/s12011-011-9105-y PubMed DOI
Hebbern C. A., Pedas P., Schjoerring J. K., Knudsen L., Husted S. (2005). Genotypic differences in manganese efficiency: field experiments with winter barley (Hordeum vulgare L.). Plant Soil 272 233–244. 10.1007/s11104-004-5048-9 DOI
Horwitz W. (2010). “Official methods of analysis of AOAC international. agricultural chemicals, contaminants,” in Gaithersburg AOAC International. Available online at: https://repositorioinstitucional.ceu.es/handle/10637/3158 (accessed January 14, 2021).
Huber D., McCay-Buis T. S. (1993). A multiple component analysis of the take-all disease of cereals. Plant Dis. 77 437–447.
Husted S., Thomsen M. U., Mattsson M., Schjoerring J. K. (2005). Plant and soil (influence of nitrogen and sulphur form on manganese acquisition by barley (Hordeum vulgare). Springer 268 309–317. 10.1007/s11104-004-0317-1 DOI
Jackson M. (1962). Soil chemical analysis. prentice hall, inc. englwood cliff, New York, USA. J. Plan Nut. Soil Sci. 85 251–252. 10.1002/jpln.19590850311 DOI
Kasana R. C., Salwan R., Dhar H., Dutt S., Gulati A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57 503–507. 10.1007/s00284-008-9276-8 PubMed DOI
Kumar S., Stecher G., Tamura K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evolu. 33 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC
Kumawat N., Kumar R., Kumar S., Meena V. S. (2017). “Nutrient solubilizing microbes: its role in sustainable crop production,” in Agriculturally Important Microbes for Sustainable Agriculture, eds Meena V., Mishra P., Bish J., Pattanayak A. (Springer; ), 26–61. 10.1007/978-981-10-5343-6_2 DOI
Leonowicz G., Trzebuniak K. F., Zimak-Piekarczyk P., Ślesak I., Mysliwa-Kurdziel B. (2018). The activity of superoxide dismutases (SODs) at the early stages of wheat deetiolation. PLoS One 13:e0194678. 10.1371/journal.pone.0194678 PubMed DOI PMC
Louden B., Haarmann D., Lynne A. (2011). Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 12 51–53. 10.1128/jmbe.v12i1.249 PubMed DOI PMC
Madgwick J. C. (1991). Microbial processing of manganese. Austr. J. Biotechnol. 12 33–38.
Marschner P., Ascher J. S., Graham R. D. (1991). Effect of manganese-reducing rhizosphere bacteria on the growth of Gaeumannomyces graminis var. tritici and on manganese uptake by wheat (Triticum aestivum L.). Biol. Fertility Soils 12 33–38. 10.1007/BF00369385 DOI
Martens D. C., Westermann D. T. (1991). “Fertilizer applications for correcting micronutrient deficiencies,” in Micronutrients in Agriculture, ed. Mortvedt J. J. (Soil Science Society of America, Inc.), 549–592. 10.2136/sssabookser4.2ed.c15 DOI
Mumtaz M., Barry K., Baker A., Nichols D., Ahmad M., Zahir Z., et al. (2019). Production of lactic and acetic acids by Bacillus sp. ZM20 and Bacillus cereus following exposure to zinc oxide: a possible mechanism for Zn solubilization. Rhizosphere 12:100170. 10.1016/j.rhisph.2019.100170 DOI
Mumtaz M. Z., Ahmad M., Jamil M., Asad S. A., Hafeez F. (2018). Bacillus strains as potential alternate for zinc biofortification of maize grains. Int. J. Agric. Biol. 20 1779–1786. 10.17957/IJAB/15.0690 PubMed DOI
Mumtaz M. Z., Ahmad M., Jamil M., Hussain T. (2017). Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol. Res. 202 51–60. 10.1016/j.micres.2017.06.001 PubMed DOI
Mumtaz M. Z., Malik A., Nazli F., Latif Malik M., Zaheer A., Ali Q., et al. (2020). Potential of zinc solubilizing Bacillus strains to improve growth, yield, and quality of maize (Zea mays). Int. J. Agric. Biol. 24 691–698. 10.17957/IJAB/15.1488 DOI
Naseer I., Ahmad M., Hussain A., Jamil M. (2020). Potential of zinc solubilizing Bacillus strains to improve rice growth under axenic conditions. Pakistan J. Agric. Sci. 57 1057–1071. 10.21162/PAKJAS/20.9988 DOI
Nath D., Maurya B. R., Meena V. S. (2017). Documentation of five potassium-and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatalysis Agric. Biotechnol. 10 174–181. 10.1016/j.bcab.2017.03.007 DOI
Nogueira M. A., Nehls U., Hampp R., Poralla K., Cardoso E. J. B. N. (2007). Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298 273–284. 10.1007/s11104-007-9379-1 DOI
Panigrahi S., Mohanty S., Rath C. C. (2020). Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with indole acetic acid (IAA) production and plant growth promoting capabilities against selected crops. South Afr. J. Bot. 134 17–26. 10.1016/j.sajb.2019.09.017 DOI
Parmar P., Sindhu S. S. (2013). Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J. Microbiol. Res. 3 25–31. 10.5923/j.microbiology.20130301.04 PubMed DOI
Patten C. L., Glick B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68 3795–3801. 10.1128/AEM.68.8.3795-3801.2002 PubMed DOI PMC
Pikovskaya R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17 362–370.
Roy B. P., Paice M. G., Archibald F. S., Misra S. K., Misiak L. E. (1994). Creation of metal-complexing agents, reduction of manganese dioxide, and promotion of manganese peroxidase-mediated Mn(III) production by cellobiose:quinone oxidoreductase from trametes versicolor. J. Biol. Chem. 269 19745–19750. 10.1016/S0021-9258(17)32084-7 PubMed DOI
Rusin P., Ehrlich H. (1995). “Developments in mcirobial leaching—mechanisms of manganese solubilization,” in Microbial and Eznymatic Bioproducts. Advances in Biochemical Engineering/Biotechnology, eds Hiroto M., Nishimura H., Kodera Y., Kawai F., Rusin P., Ehrlich H. L., et al. (Berlin: Springer; ), 1–26. 10.1007/BFb0102314 DOI
Ryan J. G., Estefan G., Rashid A. (2001). Soil and Plant Analysis Laboratory Manual. Aleppo: International Center for Agricultural Research in the Dry Areas (ICARDA).
Sanket A. S., Ghosh S., Sahoo R., Nayak S., Das A. P. (2017). Molecular identification of acidophilic manganese (Mn)-solubilizing bacteria from mining effluents and their application in mineral beneficiation. Geomicrobiol. J. 34 71–80. 10.1080/01490451.2016.1141340 DOI
Sayyed R. Z., Chincholkar S. B., Reddy M. S., Gangurde N. S., Patel P. R. (2013). “Siderophore producing PGPR for crop nutrition and phytopathogen suppression,” in Bacteria in Agrobiology: Disease Management, ed. Maheshwari D. (Berlin: Springer-Verlag; ), 449–471. 10.1007/978-3-642-33639-3_17 DOI
Schmidt S. B., Husted S. (2019). The biochemical properties of manganese in plants. Plant 8:381. 10.3390/plants8100381 PubMed DOI PMC
Schmidt S. B., Jensen P. E., Husted S. (2016). Manganese deficiency in plants: the impact on photosystem II. Trends Plant Sci. 21 622–632. 10.1016/j.tplants.2016.03.001 PubMed DOI
Schmidt S. B., Pedas P., Laursen K. H., Schjoerring J. K., Husted S. (2013). Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant Soil 372 417–429. 10.1007/s11104-013-1702-4 DOI
Schmidt S. B., Persson D. P., Powikrowska M., Frydenvang J., Schjoerring J. K., Jensen P. E., et al. (2015). Metal binding in photosystem II super-and subcomplexes from barley thylakoids. Plant Physiol. 168 1490–1502. 10.1104/pp.15.00559 PubMed DOI PMC
Schöttler M. A., Tóth S. Z. (2014). Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Front. Plant Sci. 5:188. 10.3389/fpls.2014.00188 PubMed DOI PMC
Setiawati T. C., Mutmainnah L. (2016). Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric. Agric. Sci. Proc. 9 108–117. 10.1016/j.aaspro.2016.02.134 DOI
Spaepen S., Vanderleyden J., Remans R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31 425–448. 10.1111/j.1574-6976.2007.00072.x PubMed DOI
Steel R., Torrie J., Dicky D. (1997). Principles and Procedures of Statistics, A Biometrical Approach, 3rd Edn. New York: McGraw Hill, Inc. Book Co.
Tang Y., Kang H., Qin Z., Zhang K., Zhong Y., Li H., et al. (2020). Significance of manganese resistant bacillus cereus strain WSE01 as a bioinoculant for promotion of plant growth and manganese accumulation in myriophyllum verticillatum. Sci. Total Environ. 707:135867. 10.1016/j.scitotenv.2019.135867 PubMed DOI
Tsavkelova E. A., Klimova S. Y., Cherdyntseva T. A., Netrusov A. I. (2006). Microbial producers of plant growth stimulators and their practical use: a review. Appl. Biochem. Microbiol. 42 117–126. 10.1134/S0003683806020013 PubMed DOI
Uren N. C. (1981). Chemical reduction of an insoluble higher oxide of manganese by plant roots. J. Plant Nut. 4 65–71. 10.1080/01904168109362901 DOI
Vyas P., Gulati A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9:1–15. 10.1186/1471-2180-9-174 PubMed DOI PMC
Wei Y., Shi M., Lu Q., Wei Z., Wei Y., Zhao Y., et al. (2017). Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bio. Technol. 247 190–192. 10.1016/j.biortech.2017.09.092 PubMed DOI
Wei Z., Hillier S., Gadd G. M. (2012). Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals. Environ. Microbiol. 14 1744–1753. 10.1111/j.1462-2920.2012.02776.x PubMed DOI
Whitcomb S. J., Heyneke E., Aarabi F., Watanabe M., Hoefgen R. (2014). “Mineral nutrient depletion affects plant development and crop yield,” in Nutrient Use Efficiency in Plants. Plant Ecophysiology, eds Hawkesford M., Kopriva S., de Kok L. (Cham: Springer; ), 205–228. 10.1007/978-3-319-10635-9_8 DOI
White A. R., Xin Y., Pezeshk V. (1993). Xyloglucan glucosyltransferase in golgi membranes from pisum sativum (pea). Biochem. J. 294 231–238. 10.1042/bj2940231 PubMed DOI PMC
Xie H., Pasternak J. J., Glick B. R. (1996). Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32 67–71. 10.1007/s002849900012 DOI