• This record comes from PubMed

Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals

. 2020 Nov 09 ; 6 (4) : . [epub] 20201109

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
1/0164/17, 1/0146/18 Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic and the Slovak Academy of Sciences VEGA
013SPU-4/2019 Cultural and Educational Agency of the Ministry of Education, Science and Sport of the Slovak Republic KEGA

The aim of this work was to evaluate the transformation of manganese oxide (hausmannite) by microscopic filamentous fungus Aspergillus niger and the effects of the transformation on mobility and bioavailability of arsenic. Our results showed that the A. niger strain CBS 140837 greatly affected the stability of hausmannite and induced its transformation into biogenic crystals of manganese oxalates-falottaite and lindbergite. The transformation was enabled by fungal acidolysis of hausmannite and subsequent release of manganese ions into the culture medium. While almost 45% of manganese was bioextracted, the arsenic content in manganese precipitates increased throughout the 25-day static cultivation of fungus. This significantly decreased the bioavailability of arsenic for the fungus. These results highlight the unique A. niger strain's ability to act as an active geochemical factor via its ability to acidify its environment and to induce formation of biogenic minerals. This affects not only the manganese speciation, but also bioaccumulation of potentially toxic metals and metalloids associated with manganese oxides, including arsenic.

See more in PubMed

Gadd G.M., Rhee Y.J., Stephenson K., Wei Z. Geomycology: Metals, actinides and biominerals. Environ. Microbiol. Rep. 2012;4:270–296. doi: 10.1111/j.1758-2229.2011.00283.x. PubMed DOI

Gadd G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007;111:3–49. doi: 10.1016/j.mycres.2006.12.001. PubMed DOI

Li Z., Liu L.L., Chen J., Teng H.H. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology. 2016;44:319–322. doi: 10.1130/G37561.1. DOI

Watanabe J.I., Tani Y., Miyata N., Seyama H., Mitsunobu S., Naitou H. Concurrent sorption of As (V) and Mn (II) during biogenic manganese oxide formation. Chem. Geol. 2012;306:123–128. doi: 10.1016/j.chemgeo.2012.03.004. DOI

Kolenčík M., Urík M., Gardošová K., Littera P., Matúš P. Biological and chemical leaching of arsenic and zinc from adamite. Chem. Listy. 2011;105:961–965.

Milová-Žiaková B., Urík M., Boriová K., Bujdoš M., Kolenčík M., Mikušová P., Takáčová A., Matúš P. Fungal solubilization of manganese oxide and its significance for antimony mobility. Int. Biodeterior. Biodegrad. 2016;114:157–163. doi: 10.1016/j.ibiod.2016.06.011. DOI

Mayanna S., Peacock C.L., Schäffner F., Grawunder A., Merten D., Kothe E., Büchel G. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. Chem. Geol. 2015;402:6–17. doi: 10.1016/j.chemgeo.2015.02.029. DOI

Gupta K., Maity A., Ghosh U.C. Manganese associated nanoparticles agglomerate of iron (III) oxide: Synthesis, characterization and arsenic (III) sorption behavior with mechanism. J. Hazard. Mater. 2010;184:832–842. doi: 10.1016/j.jhazmat.2010.08.117. PubMed DOI

Chakravarty S., Dureja V., Bhattacharyya G., Maity S., Bhattacharjee S. Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res. 2002;36:625–632. doi: 10.1016/S0043-1354(01)00234-2. PubMed DOI

Suda A., Makino T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma. 2016;270:68–75. doi: 10.1016/j.geoderma.2015.12.017. DOI

Tebo B.M., Bargar J.R., Clement B.G., Dick G.J., Murray K.J., Parker D., Verity R., Webb S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004;32:287–328. doi: 10.1146/annurev.earth.32.101802.120213. DOI

Antao S.M., Cruickshank L.A., Hazrah K.S. Structural trends and solid-solutions based on the crystal chemistry of two hausmannite (Mn3O4) samples from the kalahari manganese field. Minerals. 2019;9:343. doi: 10.3390/min9060343. DOI

Ergül B., Bektaş N., Öncel M.S. The use of manganese oxide minerals for the removal arsenic and selenium anions from aqueous solutions. Energy Environ. Eng. 2014;2:103–112. doi: 10.13189/eee.2014.020501. DOI

Wang P., Sun G., Jia Y., Meharg A.A., Zhu Y. A review on completing arsenic biogeochemical cycle: Microbial volatilization of arsines in environment. J. Environ. Sci. 2014;26:371–381. doi: 10.1016/S1001-0742(13)60432-5. PubMed DOI

Smedley P., Kinniburgh D. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002;17:517–568. doi: 10.1016/S0883-2927(02)00018-5. DOI

Bhattacharya P., Welch A.H., Stollenwerk K.G., McLaughlin M.J., Bundschuh J., Panaullah G. Arsenic in the Environment: Biology and Chemistry. Elsevier; Amsterdam, The Netherlands: 2007. PubMed

Žemberyová M., Shearman A., Šimonovičová A., Hagarová I. Bio-accumulation of As(III) and As(V) species from water samples by two strains of Aspergillus niger using hydride generation atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2009;89:569–581. doi: 10.1080/03067310802716107. DOI

Hagarová I. Speciation of arsenic in waters by AAS techniques. Chem. Listy. 2007;101:768–775.

Hagarová I., Žemberyová M., Hrušovská Z., Ševc J., Klimek J. Determination of arsenic in non-contaminated environmental samples by flow-injection hydrogen-generation AAS. Chem. Listy. 2006;100:901–905.

Hagarová I., Žemberyová M. Determination of arsenic in biological and environmental samples by AAS techniques. Chem. Listy. 2005;99:578–584.

Zwietering M.H., Jongenburger I., Rombouts F.M., van ’t Riet K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990;56:1875–1881. doi: 10.1128/AEM.56.6.1875-1881.1990. PubMed DOI PMC

Polák F., Urík M., Bujdoš M., Uhlík P., Matúš P. Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains’ acidic and chelating exometabolites. J. Inorg. Biochem. 2018;181:162–168. doi: 10.1016/j.jinorgbio.2017.09.006. PubMed DOI

Osman Y., Gebreil A., Mowafy A.M., Anan T.I., Hamed S.M. Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites. World J. Microbiol. Biotechnol. 2019;35:93. doi: 10.1007/s11274-019-2666-1. PubMed DOI

Kolenčík M., Urík M., Štubňa J. Heterotrophic leaching and its application in biohydrometallurgy. Chem. Listy. 2014;108:1040–1045.

Urík M., Polák F., Bujdoš M., Pifková I., Kořenková L., Littera P., Matúš P. Aluminium leaching by heterotrophic microorganism Aspergillus niger: An acidic leaching? Arab. J. Sci. Eng. 2018;43:2369–2374. doi: 10.1007/s13369-017-2784-8. DOI

Kolenčík M., Urík M., Čerñanský S., Molnárová M., Matúš P. Leaching of zinc, cadmium, lead and copper from electronic scrap using organic acids and the Aspergillus niger strain. Fresenius Environ. Bull. 2013;22:3673–3679.

Kolenčík M., Urík M., Bujdoš M., Gardošová K., Littera P., Puškelová L., Gregor M., Matúš P. Leaching of Al, Fe, Sn, Co and Au from electronics wastes using organic acid and microscopic fibrous fungus Aspergillus niger. Chem. Listy. 2013;107:182–185.

Ferrier J., Yang Y., Csetenyi L., Gadd G.M. Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger. Environ. Microbiol. 2019;21:1821–1832. doi: 10.1111/1462-2920.14591. PubMed DOI PMC

Gadd G.M., Bahri-Esfahani J., Li Q., Rhee Y.J., Wei Z., Fomina M., Liang X. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 2014;28:36–55. doi: 10.1016/j.fbr.2014.05.001. DOI

Wei Z., Hillier S., Gadd G.M. Biotransformation of manganese oxides by fungi: Solubilization and production of manganese oxalate biominerals. Environ. Microbiol. 2012;14:1744–1753. doi: 10.1111/j.1462-2920.2012.02776.x. PubMed DOI

Oggerin M., Tornos F., Rodríguez N., del Moral C., Sánchez-Román M., Amils R. Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Environ. Microbiol. 2013;15:2228–2237. doi: 10.1111/1462-2920.12094. PubMed DOI

Livne A., Mijowska S.C., Polishchuk I., Mashikoane W., Katsman A., Pokroy B. A fungal mycelium templates the growth of aragonite needles. J. Mater. Chem. B. 2019;7:5725–5731. doi: 10.1039/C9TB01169B. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...