Fungal Mobilization of Selenium in the Presence of Hausmannite and Ferric Oxyhydroxides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 1/0146/18
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
UK/166/2021
Univerzita Komenského v Bratislave
Project for Specific University Research (SGS) no. SP2021/11
Faculty of Mining and Geology of VŠB - Technical University of Ostrava & Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34682232
PubMed Central
PMC8539610
DOI
10.3390/jof7100810
PII: jof7100810
Knihovny.cz E-zdroje
- Klíčová slova
- bioleaching, fungi, iron, manganese, selenate,
- Publikační typ
- časopisecké články MeSH
Bioleaching of mineral phases plays a crucial role in the mobility and availability of various elements, including selenium. Therefore, the leachability of selenium associated with the surfaces of ferric and manganese oxides and oxyhydroxides, the prevailing components of natural geochemical barriers, has been studied in the presence of filamentous fungus. Both geoactive phases were exposed to selenate and subsequently to growing fungus Aspergillus niger for three weeks. This common soil fungus has shown exceptional ability to alter the distribution and mobility of selenium in the presence of both solid phases. The fungus initiated the extensive bioextraction of selenium from the surfaces of amorphous ferric oxyhydroxides, while the hausmannite (Mn3O4) was highly susceptible to biodeterioration in the presence of selenium. This resulted in specific outcomes regarding the selenium, iron, and manganese uptake by fungus and residual selenium concentrations in mineral phases as well. The adverse effects of bioleaching on fungal growth are also discussed.
Department of Environment and Energy Jeonbuk National University Jeonju 54896 Jeonbuk Korea
Polymer Institute Slovak Academy of Sciences Dúbravská Cesta 9 845 41 Bratislava Slovakia
Zobrazit více v PubMed
Zhang C., Yu Z.-G., Zeng G.-M., Jiang M., Yang Z.-Z., Cui F., Zhu M.-Y., Shen L.-Q., Hu L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014;73:270–281. doi: 10.1016/j.envint.2014.08.010. PubMed DOI
Lee G., Bigham J.M., Faure G. Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochem. 2002;17:569–581. doi: 10.1016/S0883-2927(01)00125-1. DOI
Sipos P., Choi C., Németh T., Szalai Z., Póka T. Relationship between iron and trace metal fractionation in soils. Chem. Speciat. Bioavailab. 2014;26:21–30. doi: 10.3184/095422914X13887685052506. DOI
Post J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA. 1999;96:3447–3454. doi: 10.1073/pnas.96.7.3447. PubMed DOI PMC
Korobova E.M., Ryzhenko B.N., Cherkasova E.V., Sedykh E.M., Korsakova N.V., Danilova V.N., Khushvakhtova S.D., Berezkin V.Y. Iodine and selenium speciation in natural waters and their concentrating at landscape-geochemical barriers. Geochem. Int. 2014;52:500–514. doi: 10.1134/S001670291404003X. DOI
Dudová J., Bujdoš M. Study of selenium sorption on iron oxide hydroxides. Chem. Listy. 2015;109:770–774.
Hagarová I., Nemček L. Selenium in Blood Serum of Healthy European Population. Chem. Listy. 2020;114:329–335.
Hagarová I., Žemberyová M. Determination of selenium in blood serum of children by electrothermal atomic absorption spectrometry. Chem. Listy. 2005;99:34–39.
Lenz M., Lens P.N.L. The essential toxin: The changing perception of selenium in environmental sciences. Sci. Total Environ. 2009;407:3620–3633. doi: 10.1016/j.scitotenv.2008.07.056. PubMed DOI
He Y., Xiang Y., Zhou Y., Yang Y., Zhang J., Huang H., Shang C., Luo L., Gao J., Tang L. Selenium contamination, consequences and remediation techniques in water and soils: A review. Environ. Res. 2018;164:288–301. doi: 10.1016/j.envres.2018.02.037. PubMed DOI
Hagarová I., Žemberyová M., Bajčan D. Sequential and single step extraction procedures used for fractionation of selenium in soil samples. Chem. Pap. 2005;59:93–98.
Durán P., Acuña J.J., Jorquera M.A., Azcón R., Borie F., Cornejo P., Mora M.L. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. J. Cereal Sci. 2013;57:275–280. doi: 10.1016/j.jcs.2012.11.012. DOI
Perkins W.T. Extreme selenium and tellurium contamination in soils—An eighty year-old industrial legacy surrounding a Ni refinery in the Swansea Valley. Sci. Total Environ. 2011;412–413:162–169. doi: 10.1016/j.scitotenv.2011.09.056. PubMed DOI
Schuler C.A., Anthony R.G., Ohlendorf H.M. Selenium in wetlands and waterfowl foods at Kesterson Reservoir, California, 1984. Arch. Environ. Contam. Toxicol. 1990;19:845–853. doi: 10.1007/BF01055049. PubMed DOI
Börsig N., Scheinost A.C., Shaw S., Schild D., Neumann T. Uptake mechanisms of selenium oxyanions during the ferrihydrite-hematite recrystallization. Geochim. Cosmochim. Acta. 2017;206:236–253. doi: 10.1016/j.gca.2017.03.004. DOI
Čanecká L., Bujdoš M., Boriová K. Hydroxides and their potential utilization in reducing the content of some undesirable elements in the natural environment by sorption mechanisms. Chem. Listy. 2015;109:105–108.
Li Z., Yuan Y., Ma L., Zhang Y., Jiang H., He J., Hu Y., Yuan S., Ginder-Vogel M., Tu S. Simultaneous Kinetics of Selenite Oxidation and Sorption on δ-MnO(2) in Stirred-Flow Reactors. Int. J. Environ. Res. Public Health. 2021;18:2902. doi: 10.3390/ijerph18062902. PubMed DOI PMC
Mayanna S., Peacock C.L., Schäffner F., Grawunder A., Merten D., Kothe E., Büchel G. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. Chem. Geol. 2015;402:6–17. doi: 10.1016/j.chemgeo.2015.02.029. DOI
Farkas B., Kolenčík M., Hain M., Dobročka E., Kratošová G., Bujdoš M., Feng H., Deng Y., Yu Q., Illa R., et al. Aspergillus niger decreases bioavailability of arsenic(V) via biotransformation of manganese oxide into biogenic oxalate minerals. J. Fungi. 2020;6:270. doi: 10.3390/jof6040270. PubMed DOI PMC
Miglierini M.B., Dekan J., Urík M., Cesnek M., Kmječ T., Matúš P. Fungal-induced modification of spontaneously precipitated ochreous sediments from drainage of abandoned antimony mine. Chemosphere. 2021;269:128733. doi: 10.1016/j.chemosphere.2020.128733. PubMed DOI
Duborská E., Szabó K., Bujdoš M., Vojtková H., Littera P., Dobročka E., Kim H., Urík M. Assessment of Aspergillus niger strain’s suitability for arsenate-contaminated water treatment and adsorbent recycling via bioextraction in a laboratory-scale experiment. Microorganisms. 2020;8:1668. doi: 10.3390/microorganisms8111668. PubMed DOI PMC
Milová-Žiaková B., Urík M., Boriová K., Bujdoš M., Kolenčík M., Mikušová P., Takáčová A., Matúš P. Fungal solubilization of manganese oxide and its significance for antimony mobility. Int. Biodeterior. Biodegrad. 2016;114:157–163. doi: 10.1016/j.ibiod.2016.06.011. DOI
Urík M., Polák F., Bujdoš M., Miglierini M.B., Milová-Žiaková B., Farkas B., Goneková Z., Vojtková H., Matúš P. Antimony leaching from antimony-bearing ferric oxyhydroxides by filamentous fungi and biotransformation of ferric substrate. Sci. Total Environ. 2019;664:683–689. doi: 10.1016/j.scitotenv.2019.02.033. PubMed DOI
Lafferty B.J., Loeppert R.H. Methyl arsenic adsorption and desorption behavior on iron oxides. Environ. Sci. Technol. 2005;39:2120–2127. doi: 10.1021/es048701+. PubMed DOI
Urík M., Hlodák M., Mikušová P., Matúš P. Potential of microscopic fungi isolated from mercury contaminated soils to accumulate and volatilize mercury(II) Water Air Soil Pollut. 2014;225:2219. doi: 10.1007/s11270-014-2219-z. DOI
Matulová M., Urík M., Bujdoš M., Duborská E., Cesnek M., Miglierini M.B. Selenite sorption onto goethite: Isotherm and ion-competitive studies, and effect of pH on sorption kinetics. Chem. Pap. 2019;73:2975–2985. doi: 10.1007/s11696-019-00847-1. DOI
Matulová M., Bujdoš M., Miglierini M.B., Mitróová Z., Kubovčíková M., Urík M. The effects of selenate on goethite synthesis and selenate sorption kinetics onto a goethite surface—A three-step process with an unexpected desorption phase. Chem. Geol. 2020;556:119852. doi: 10.1016/j.chemgeo.2020.119852. DOI
Marjanovic V., Peric-Grujic A., Ristic M., Marinkovic A., Markovic R., Onjia A., Sljivic-Ivanovic M. Selenate adsorption from water using the hydrous iron oxide-impregnated hybrid polymer. Metals. 2020;10:1630. doi: 10.3390/met10121630. DOI
Zelmanov G., Semiat R. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep. Purif. Technol. 2013;103:167–172. doi: 10.1016/j.seppur.2012.10.037. DOI
Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014;31:1266–1276. doi: 10.1039/C4NP00071D. PubMed DOI PMC
Odoni D.I., van Gaal M.P., Schonewille T., Tamayo-Ramos J.A., Martins dos Santos V.A.P., Suarez-Diez M., Schaap P.J. Aspergillus niger Secretes Citrate to Increase Iron Bioavailability. Front. Microbiol. 2017;8:1424. doi: 10.3389/fmicb.2017.01424. PubMed DOI PMC
Urík M., Polák F., Bujdoš M., Pifková I., Kořenková L., Littera P., Matúš P. Aluminium Leaching by Heterotrophic Microorganism Aspergillus niger: An Acidic Leaching? Arab. J. Sci. Eng. 2018;43:2369–2374. doi: 10.1007/s13369-017-2784-8. DOI
Osman Y., Gebreil A., Mowafy A.M., Anan T.I., Hamed S.M. Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites. World J. Microbiol. Biotechnol. 2019;35:93. doi: 10.1007/s11274-019-2666-1. PubMed DOI
Odoni D.I., Vazquez-Vilar M., van Gaal M.P., Schonewille T., Santos V.A.P.M.D., Tamayo-Ramos J.A., Suarez-Diez M., Schaap P.J. Aspergillus niger citrate exporter revealed by comparison of two alternative citrate producing conditions. FEMS Microbiol. Lett. 2019;366 doi: 10.1093/femsle/fnz071. PubMed DOI PMC
Andersen M.R., Lehmann L., Nielsen J. Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol. 2009;10:R47. doi: 10.1186/gb-2009-10-5-r47. PubMed DOI PMC
Taxiarchou M., Panias D., Douni I., Paspaliaris I., Kontopoulos A. Dissolution of hematite in acidic oxalate solutions. Hydrometallurgy. 1997;44:287–299. doi: 10.1016/S0304-386X(96)00075-8. DOI
Polák F., Urík M., Bujdoš M., Matúš P. Aspergillus niger enhances oxalate production as a response to phosphate deficiency induced by aluminium(III) J. Inorg. Biochem. 2020;204:110961. doi: 10.1016/j.jinorgbio.2019.110961. PubMed DOI
Polák F., Urík M., Bujdoš M., Uhlík P., Matúš P. Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains’ acidic and chelating exometabolites. J. Inorg. Biochem. 2018;181:162–168. doi: 10.1016/j.jinorgbio.2017.09.006. PubMed DOI
Valix M., Usai F., Malik R. Fungal bio-leaching of low grade laterite ores. Miner. Eng. 2001;14:197–203. doi: 10.1016/S0892-6875(00)00175-8. DOI
Urík M., Boriová K., Bujdoš M., Matúš P. Fungal Selenium(VI) Accumulation and Biotransformation—Filamentous Fungi in Selenate Contaminated Aqueous Media Remediation. CLEAN—Soil Air Water. 2016;44:610–614. doi: 10.1002/clen.201500100. DOI
Fink J.R., Inda A.V., Tiecher T., Barrón V. Iron oxides and organic matter on soil phosphorus availability. Cienc. Agrotecnol. 2016;40:369–379. doi: 10.1590/1413-70542016404023016. DOI
Dusengemungu L., Kasali G., Gwanama C., Mubemba B. Overview of fungal bioleaching of metals. Environ. Adv. 2021;5:100083. doi: 10.1016/j.envadv.2021.100083. DOI
Urík M., Farkas B., Miglierini M.B., Bujdoš M., Mitróová Z., Kim H., Matúš P. Mobilisation of hazardous elements from arsenic-rich mine drainage ochres by three Aspergillus species. J. Hazard. Mater. 2021;409:124938. doi: 10.1016/j.jhazmat.2020.124938. PubMed DOI
Sabuda M.C., Rosenfeld C.E., DeJournett T.D., Schroeder K., Wuolo-Journey K., Santelli C.M. Fungal Bioremediation of Selenium-Contaminated Industrial and Municipal Wastewaters. Front. Microbiol. 2020;11:2105. doi: 10.3389/fmicb.2020.02105. PubMed DOI PMC
Weissman G.S., Trelease S.F. Influence of sulfur on the toxicity of selenium to Aspergillus. Am. J. Bot. 1955;42:489–495. doi: 10.1002/j.1537-2197.1955.tb11152.x. DOI
Casado M., Anawar H.M., Garcia-Sanchez A., Regina I.S. Arsenic Bioavailability in Polluted Mining Soils and Uptake by Tolerant Plants (El Cabaco mine, Spain) Bull. Environ. Contam. Toxicol. 2007;79:29–35. doi: 10.1007/s00128-007-9214-7. PubMed DOI
Brown G.E., Foster A.L., Ostergren J.D. Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective. Proc. Natl. Acad. Sci. USA. 1999;96:3388. doi: 10.1073/pnas.96.7.3388. PubMed DOI PMC
Li J., Loi G., Otero-Gonzalez L., Laing G.D., Ferrer I., Lens P.N.L. Selenate and selenite uptake, accumulation and toxicity in Lemna minuta. Water. Sci. Technol. 2020;81:1852–1862. doi: 10.2166/wst.2020.214. PubMed DOI
Balistrieri L.S., Chao T.T. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta. 1990;54:739–751. doi: 10.1016/0016-7037(90)90369-V. DOI
Tang Y., Zeiner C.A., Santelli C.M., Hansel C.M. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environ. Microbiol. 2013;15:1063–1077. doi: 10.1111/1462-2920.12029. PubMed DOI
Wei Z., Hillier S., Gadd G.M. Biotransformation of manganese oxides by fungi: Solubilization and production of manganese oxalate biominerals. Environ. Microbiol. 2012;14:1744–1753. doi: 10.1111/j.1462-2920.2012.02776.x. PubMed DOI
Godunov E.B., Artamonova I.V., Gorichev I.G., Lainer Y.A. Influence of oxalic acid on the dissolution kinetics of manganese oxide. Russ. Metall. 2012;2012:935–941. doi: 10.1134/S0036029512110079. DOI
Babich H., Stotzky G. Manganese toxicity to fungi: Influence of pH. Bull. Environ. Contam. Toxicol. 1981;27:474–480. doi: 10.1007/BF01611052. PubMed DOI