Fungal Mobilization of Selenium in the Presence of Hausmannite and Ferric Oxyhydroxides

. 2021 Sep 28 ; 7 (10) : . [epub] 20210928

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34682232

Grantová podpora
VEGA 1/0146/18 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
UK/166/2021 Univerzita Komenského v Bratislave
Project for Specific University Research (SGS) no. SP2021/11 Faculty of Mining and Geology of VŠB - Technical University of Ostrava & Ministry of Education, Youth and Sports of the Czech Republic

Bioleaching of mineral phases plays a crucial role in the mobility and availability of various elements, including selenium. Therefore, the leachability of selenium associated with the surfaces of ferric and manganese oxides and oxyhydroxides, the prevailing components of natural geochemical barriers, has been studied in the presence of filamentous fungus. Both geoactive phases were exposed to selenate and subsequently to growing fungus Aspergillus niger for three weeks. This common soil fungus has shown exceptional ability to alter the distribution and mobility of selenium in the presence of both solid phases. The fungus initiated the extensive bioextraction of selenium from the surfaces of amorphous ferric oxyhydroxides, while the hausmannite (Mn3O4) was highly susceptible to biodeterioration in the presence of selenium. This resulted in specific outcomes regarding the selenium, iron, and manganese uptake by fungus and residual selenium concentrations in mineral phases as well. The adverse effects of bioleaching on fungal growth are also discussed.

Zobrazit více v PubMed

Zhang C., Yu Z.-G., Zeng G.-M., Jiang M., Yang Z.-Z., Cui F., Zhu M.-Y., Shen L.-Q., Hu L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014;73:270–281. doi: 10.1016/j.envint.2014.08.010. PubMed DOI

Lee G., Bigham J.M., Faure G. Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochem. 2002;17:569–581. doi: 10.1016/S0883-2927(01)00125-1. DOI

Sipos P., Choi C., Németh T., Szalai Z., Póka T. Relationship between iron and trace metal fractionation in soils. Chem. Speciat. Bioavailab. 2014;26:21–30. doi: 10.3184/095422914X13887685052506. DOI

Post J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA. 1999;96:3447–3454. doi: 10.1073/pnas.96.7.3447. PubMed DOI PMC

Korobova E.M., Ryzhenko B.N., Cherkasova E.V., Sedykh E.M., Korsakova N.V., Danilova V.N., Khushvakhtova S.D., Berezkin V.Y. Iodine and selenium speciation in natural waters and their concentrating at landscape-geochemical barriers. Geochem. Int. 2014;52:500–514. doi: 10.1134/S001670291404003X. DOI

Dudová J., Bujdoš M. Study of selenium sorption on iron oxide hydroxides. Chem. Listy. 2015;109:770–774.

Hagarová I., Nemček L. Selenium in Blood Serum of Healthy European Population. Chem. Listy. 2020;114:329–335.

Hagarová I., Žemberyová M. Determination of selenium in blood serum of children by electrothermal atomic absorption spectrometry. Chem. Listy. 2005;99:34–39.

Lenz M., Lens P.N.L. The essential toxin: The changing perception of selenium in environmental sciences. Sci. Total Environ. 2009;407:3620–3633. doi: 10.1016/j.scitotenv.2008.07.056. PubMed DOI

He Y., Xiang Y., Zhou Y., Yang Y., Zhang J., Huang H., Shang C., Luo L., Gao J., Tang L. Selenium contamination, consequences and remediation techniques in water and soils: A review. Environ. Res. 2018;164:288–301. doi: 10.1016/j.envres.2018.02.037. PubMed DOI

Hagarová I., Žemberyová M., Bajčan D. Sequential and single step extraction procedures used for fractionation of selenium in soil samples. Chem. Pap. 2005;59:93–98.

Durán P., Acuña J.J., Jorquera M.A., Azcón R., Borie F., Cornejo P., Mora M.L. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. J. Cereal Sci. 2013;57:275–280. doi: 10.1016/j.jcs.2012.11.012. DOI

Perkins W.T. Extreme selenium and tellurium contamination in soils—An eighty year-old industrial legacy surrounding a Ni refinery in the Swansea Valley. Sci. Total Environ. 2011;412–413:162–169. doi: 10.1016/j.scitotenv.2011.09.056. PubMed DOI

Schuler C.A., Anthony R.G., Ohlendorf H.M. Selenium in wetlands and waterfowl foods at Kesterson Reservoir, California, 1984. Arch. Environ. Contam. Toxicol. 1990;19:845–853. doi: 10.1007/BF01055049. PubMed DOI

Börsig N., Scheinost A.C., Shaw S., Schild D., Neumann T. Uptake mechanisms of selenium oxyanions during the ferrihydrite-hematite recrystallization. Geochim. Cosmochim. Acta. 2017;206:236–253. doi: 10.1016/j.gca.2017.03.004. DOI

Čanecká L., Bujdoš M., Boriová K. Hydroxides and their potential utilization in reducing the content of some undesirable elements in the natural environment by sorption mechanisms. Chem. Listy. 2015;109:105–108.

Li Z., Yuan Y., Ma L., Zhang Y., Jiang H., He J., Hu Y., Yuan S., Ginder-Vogel M., Tu S. Simultaneous Kinetics of Selenite Oxidation and Sorption on δ-MnO(2) in Stirred-Flow Reactors. Int. J. Environ. Res. Public Health. 2021;18:2902. doi: 10.3390/ijerph18062902. PubMed DOI PMC

Mayanna S., Peacock C.L., Schäffner F., Grawunder A., Merten D., Kothe E., Büchel G. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. Chem. Geol. 2015;402:6–17. doi: 10.1016/j.chemgeo.2015.02.029. DOI

Farkas B., Kolenčík M., Hain M., Dobročka E., Kratošová G., Bujdoš M., Feng H., Deng Y., Yu Q., Illa R., et al. Aspergillus niger decreases bioavailability of arsenic(V) via biotransformation of manganese oxide into biogenic oxalate minerals. J. Fungi. 2020;6:270. doi: 10.3390/jof6040270. PubMed DOI PMC

Miglierini M.B., Dekan J., Urík M., Cesnek M., Kmječ T., Matúš P. Fungal-induced modification of spontaneously precipitated ochreous sediments from drainage of abandoned antimony mine. Chemosphere. 2021;269:128733. doi: 10.1016/j.chemosphere.2020.128733. PubMed DOI

Duborská E., Szabó K., Bujdoš M., Vojtková H., Littera P., Dobročka E., Kim H., Urík M. Assessment of Aspergillus niger strain’s suitability for arsenate-contaminated water treatment and adsorbent recycling via bioextraction in a laboratory-scale experiment. Microorganisms. 2020;8:1668. doi: 10.3390/microorganisms8111668. PubMed DOI PMC

Milová-Žiaková B., Urík M., Boriová K., Bujdoš M., Kolenčík M., Mikušová P., Takáčová A., Matúš P. Fungal solubilization of manganese oxide and its significance for antimony mobility. Int. Biodeterior. Biodegrad. 2016;114:157–163. doi: 10.1016/j.ibiod.2016.06.011. DOI

Urík M., Polák F., Bujdoš M., Miglierini M.B., Milová-Žiaková B., Farkas B., Goneková Z., Vojtková H., Matúš P. Antimony leaching from antimony-bearing ferric oxyhydroxides by filamentous fungi and biotransformation of ferric substrate. Sci. Total Environ. 2019;664:683–689. doi: 10.1016/j.scitotenv.2019.02.033. PubMed DOI

Lafferty B.J., Loeppert R.H. Methyl arsenic adsorption and desorption behavior on iron oxides. Environ. Sci. Technol. 2005;39:2120–2127. doi: 10.1021/es048701+. PubMed DOI

Urík M., Hlodák M., Mikušová P., Matúš P. Potential of microscopic fungi isolated from mercury contaminated soils to accumulate and volatilize mercury(II) Water Air Soil Pollut. 2014;225:2219. doi: 10.1007/s11270-014-2219-z. DOI

Matulová M., Urík M., Bujdoš M., Duborská E., Cesnek M., Miglierini M.B. Selenite sorption onto goethite: Isotherm and ion-competitive studies, and effect of pH on sorption kinetics. Chem. Pap. 2019;73:2975–2985. doi: 10.1007/s11696-019-00847-1. DOI

Matulová M., Bujdoš M., Miglierini M.B., Mitróová Z., Kubovčíková M., Urík M. The effects of selenate on goethite synthesis and selenate sorption kinetics onto a goethite surface—A three-step process with an unexpected desorption phase. Chem. Geol. 2020;556:119852. doi: 10.1016/j.chemgeo.2020.119852. DOI

Marjanovic V., Peric-Grujic A., Ristic M., Marinkovic A., Markovic R., Onjia A., Sljivic-Ivanovic M. Selenate adsorption from water using the hydrous iron oxide-impregnated hybrid polymer. Metals. 2020;10:1630. doi: 10.3390/met10121630. DOI

Zelmanov G., Semiat R. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep. Purif. Technol. 2013;103:167–172. doi: 10.1016/j.seppur.2012.10.037. DOI

Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 2014;31:1266–1276. doi: 10.1039/C4NP00071D. PubMed DOI PMC

Odoni D.I., van Gaal M.P., Schonewille T., Tamayo-Ramos J.A., Martins dos Santos V.A.P., Suarez-Diez M., Schaap P.J. Aspergillus niger Secretes Citrate to Increase Iron Bioavailability. Front. Microbiol. 2017;8:1424. doi: 10.3389/fmicb.2017.01424. PubMed DOI PMC

Urík M., Polák F., Bujdoš M., Pifková I., Kořenková L., Littera P., Matúš P. Aluminium Leaching by Heterotrophic Microorganism Aspergillus niger: An Acidic Leaching? Arab. J. Sci. Eng. 2018;43:2369–2374. doi: 10.1007/s13369-017-2784-8. DOI

Osman Y., Gebreil A., Mowafy A.M., Anan T.I., Hamed S.M. Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites. World J. Microbiol. Biotechnol. 2019;35:93. doi: 10.1007/s11274-019-2666-1. PubMed DOI

Odoni D.I., Vazquez-Vilar M., van Gaal M.P., Schonewille T., Santos V.A.P.M.D., Tamayo-Ramos J.A., Suarez-Diez M., Schaap P.J. Aspergillus niger citrate exporter revealed by comparison of two alternative citrate producing conditions. FEMS Microbiol. Lett. 2019;366 doi: 10.1093/femsle/fnz071. PubMed DOI PMC

Andersen M.R., Lehmann L., Nielsen J. Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol. 2009;10:R47. doi: 10.1186/gb-2009-10-5-r47. PubMed DOI PMC

Taxiarchou M., Panias D., Douni I., Paspaliaris I., Kontopoulos A. Dissolution of hematite in acidic oxalate solutions. Hydrometallurgy. 1997;44:287–299. doi: 10.1016/S0304-386X(96)00075-8. DOI

Polák F., Urík M., Bujdoš M., Matúš P. Aspergillus niger enhances oxalate production as a response to phosphate deficiency induced by aluminium(III) J. Inorg. Biochem. 2020;204:110961. doi: 10.1016/j.jinorgbio.2019.110961. PubMed DOI

Polák F., Urík M., Bujdoš M., Uhlík P., Matúš P. Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains’ acidic and chelating exometabolites. J. Inorg. Biochem. 2018;181:162–168. doi: 10.1016/j.jinorgbio.2017.09.006. PubMed DOI

Valix M., Usai F., Malik R. Fungal bio-leaching of low grade laterite ores. Miner. Eng. 2001;14:197–203. doi: 10.1016/S0892-6875(00)00175-8. DOI

Urík M., Boriová K., Bujdoš M., Matúš P. Fungal Selenium(VI) Accumulation and Biotransformation—Filamentous Fungi in Selenate Contaminated Aqueous Media Remediation. CLEAN—Soil Air Water. 2016;44:610–614. doi: 10.1002/clen.201500100. DOI

Fink J.R., Inda A.V., Tiecher T., Barrón V. Iron oxides and organic matter on soil phosphorus availability. Cienc. Agrotecnol. 2016;40:369–379. doi: 10.1590/1413-70542016404023016. DOI

Dusengemungu L., Kasali G., Gwanama C., Mubemba B. Overview of fungal bioleaching of metals. Environ. Adv. 2021;5:100083. doi: 10.1016/j.envadv.2021.100083. DOI

Urík M., Farkas B., Miglierini M.B., Bujdoš M., Mitróová Z., Kim H., Matúš P. Mobilisation of hazardous elements from arsenic-rich mine drainage ochres by three Aspergillus species. J. Hazard. Mater. 2021;409:124938. doi: 10.1016/j.jhazmat.2020.124938. PubMed DOI

Sabuda M.C., Rosenfeld C.E., DeJournett T.D., Schroeder K., Wuolo-Journey K., Santelli C.M. Fungal Bioremediation of Selenium-Contaminated Industrial and Municipal Wastewaters. Front. Microbiol. 2020;11:2105. doi: 10.3389/fmicb.2020.02105. PubMed DOI PMC

Weissman G.S., Trelease S.F. Influence of sulfur on the toxicity of selenium to Aspergillus. Am. J. Bot. 1955;42:489–495. doi: 10.1002/j.1537-2197.1955.tb11152.x. DOI

Casado M., Anawar H.M., Garcia-Sanchez A., Regina I.S. Arsenic Bioavailability in Polluted Mining Soils and Uptake by Tolerant Plants (El Cabaco mine, Spain) Bull. Environ. Contam. Toxicol. 2007;79:29–35. doi: 10.1007/s00128-007-9214-7. PubMed DOI

Brown G.E., Foster A.L., Ostergren J.D. Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective. Proc. Natl. Acad. Sci. USA. 1999;96:3388. doi: 10.1073/pnas.96.7.3388. PubMed DOI PMC

Li J., Loi G., Otero-Gonzalez L., Laing G.D., Ferrer I., Lens P.N.L. Selenate and selenite uptake, accumulation and toxicity in Lemna minuta. Water. Sci. Technol. 2020;81:1852–1862. doi: 10.2166/wst.2020.214. PubMed DOI

Balistrieri L.S., Chao T.T. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta. 1990;54:739–751. doi: 10.1016/0016-7037(90)90369-V. DOI

Tang Y., Zeiner C.A., Santelli C.M., Hansel C.M. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation. Environ. Microbiol. 2013;15:1063–1077. doi: 10.1111/1462-2920.12029. PubMed DOI

Wei Z., Hillier S., Gadd G.M. Biotransformation of manganese oxides by fungi: Solubilization and production of manganese oxalate biominerals. Environ. Microbiol. 2012;14:1744–1753. doi: 10.1111/j.1462-2920.2012.02776.x. PubMed DOI

Godunov E.B., Artamonova I.V., Gorichev I.G., Lainer Y.A. Influence of oxalic acid on the dissolution kinetics of manganese oxide. Russ. Metall. 2012;2012:935–941. doi: 10.1134/S0036029512110079. DOI

Babich H., Stotzky G. Manganese toxicity to fungi: Influence of pH. Bull. Environ. Contam. Toxicol. 1981;27:474–480. doi: 10.1007/BF01611052. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Current Strategies for Selenium and Iodine Biofortification in Crop Plants

. 2022 Nov 08 ; 14 (22) : . [epub] 20221108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...