Assessment of Aspergillus niger Strain's Suitability for Arsenate-Contaminated Water Treatment and Adsorbent Recycling via Bioextraction in a Laboratory-Scale Experiment
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
1/0164/17
Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences VEGA
1/0146/18
Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences VEGA
PubMed
33121130
PubMed Central
PMC7693371
DOI
10.3390/microorganisms8111668
PII: microorganisms8111668
Knihovny.cz E-resources
- Keywords
- arsenic, bioaccumulation, bioextraction, ferric oxyhydroxides, filamentous fungi,
- Publication type
- Journal Article MeSH
In this work, the viability of bioaccumulation and bioextraction processes for arsenic removal from contaminated waters, as well as the recycling of arsenate-treated amorphous ferric oxyhydroxide adsorbent (FeOOH) were evaluated using the common soil microscopic filamentous fungus Aspergillus niger. After treating the contaminated arsenate solution (100 mg As L-1) with FeOOH, the remaining solution was exposed to the growing fungus during a static 19-day cultivation period to further decrease the arsenic concentration. Our data indicated that although the FeOOH adsorbent is suitable for arsenate removal with up to 84% removal efficiency, the fungus was capable of accumulating only up to 13.2% of the remaining arsenic from the culture media. This shows that the fungus A. niger, although highly praised for its application in environmental biotechnology research, was insufficient for decreasing the arsenic contamination to an environmentally acceptable level. However, the bioextraction of arsenic from arsenate-treated FeOOH proved relatively effective for reuse of the adsorbent. Due to its production of acidic metabolites, which decreased pH below 2.7, the fungal strain was capable of removing of up to 98.2% of arsenic from the arsenate-treated FeOOH adsorbent.
See more in PubMed
Borja D., Nguyen K.A., Silva R.A., Ngoma E., Petersen J., Harrison S.T.L., Park J.H., Kim H. Continuous bioleaching of arsenopyrite from mine tailings using an adapted mesophilic microbial culture. Hydrometallurgy. 2019;187:187–194. doi: 10.1016/j.hydromet.2019.05.022. DOI
Sasaki K., Takatsugi K., Kaneko K., Kozai N., Ohnuki T., Tuovinen O.H., Hirajima T. Characterization of secondary arsenic-bearing precipitates formed in the bioleaching of enargite by Acidithiobacillus ferrooxidans. Hydrometallurgy. 2010;104:424–431. doi: 10.1016/j.hydromet.2009.12.012. DOI
Ngoma E., Borja D., Smart M., Shaik K., Kim H., Petersen J., Harrison S.T.L. Bioleaching of arsenopyrite from Janggun mine tailings (Korea) using an adapted mixed mesophilic culture. Hydrometallurgy. 2018;181:21–28. doi: 10.1016/j.hydromet.2018.08.010. DOI
Castro L., Blázquez M.L., González F., Muñoz J.A., Ballester A. Anaerobic bioleaching of jarosites by Shewanella putrefaciens, influence of chelators and biofilm formation. Hydrometallurgy. 2017;168:56–63. doi: 10.1016/j.hydromet.2016.08.002. DOI
Su C., Zhang M., Lin L., Yu G., Zhong H., Chong Y. Reduction of iron oxides and microbial community composition in iron-rich soils with different organic carbon as electron donors. Int. Biodeterior. Biodegrad. 2020;148:104881. doi: 10.1016/j.ibiod.2019.104881. DOI
Hosseini Nasab M., Noaparast M., Abdollahi H., Amoozegar M.A. Indirect bioleaching of Co and Ni from iron rich laterite ore, using metabolic carboxylic acids generated by P. putida, P. koreensis, P. bilaji and A. niger. Hydrometallurgy. 2020;193:105309. doi: 10.1016/j.hydromet.2020.105309. DOI
Qu Y., Lian B., Mo B., Liu C. Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy. 2013;136:71–77. doi: 10.1016/j.hydromet.2013.03.006. DOI
Adams P., Lynch J.M., De Leij F.A.A.M. Desorption of zinc by extracellularly produced metabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolor. J. Appl. Microbiol. 2007;103:2240–2247. doi: 10.1111/j.1365-2672.2007.03472.x. PubMed DOI
Cairns T.C., Nai C., Meyer V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol. Biotechnol. 2018;5:13. doi: 10.1186/s40694-018-0054-5. PubMed DOI PMC
Vakilchap F., Mousavi S.M., Shojaosadati S.A. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process. Bioresour. Technol. 2016;218:991–998. doi: 10.1016/j.biortech.2016.07.059. PubMed DOI
Kolenčík M., Vojtková H., Urík M., Čaplovičová M., Pištora J., Cada M., Babičová A., Feng H., Qian Y., Ramakanth I., et al. Heterotrophic bacterial leaching of zinc and arsenic from artificial adamite. Water Air Soil Pollut. 2017;228:224. doi: 10.1007/s11270-017-3400-y. DOI
Urík M., Bujdoš M., Milová B. Biologically induced mobilization of arsenic adsorbed onto amorphous ferric oxyhydroxides in aqueous solution during fungal cultivation. Water Air Soil Pollut. 2014;225:2172. doi: 10.1007/s11270-014-2172-x. DOI
Mandal P. An insight of environmental contamination of arsenic on animal health. Emerg. Contam. 2017;3:17–22. doi: 10.1016/j.emcon.2017.01.004. DOI
Kapaj S., Peterson H., Liber K., Bhattacharya P. Human health effects from chronic arsenic poisoning—A review. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxic Hazard. Subst. Control. 2006;41:2399–2428. doi: 10.1080/10934520600873571. PubMed DOI
Hao L., Liu M., Wang N., Li G. A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 2018;8:39545–39560. doi: 10.1039/C8RA08512A. PubMed DOI PMC
Libatique M.J.H., Lee M.-C., Yeh H.-Y., Jhang F.-J. Total and inorganic arsenic biosorption by Sarcodia suiae (Rhodophyta), as affected by controlled environmental conditions. Chemosphere. 2020;248:126084. doi: 10.1016/j.chemosphere.2020.126084. PubMed DOI
Žemberyová M., Shearman A., Šimonovičová A., Hagarová I. Bio-accumulation of As(III) and As(V) species from water samples by two strains of Aspergillus niger using hydride generation atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2009;89:569–581. doi: 10.1080/03067310802716107. DOI
Diep P., Mahadevan R., Yakunin A.F. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front. Bioeng. Biotechnol. 2018;6:157. doi: 10.3389/fbioe.2018.00157. PubMed DOI PMC
Hayat K., Menhas S., Bundschuh J., Chaudhary H.J. Microbial biotechnology as an emerging industrial wastewater treatment process for arsenic mitigation: A critical review. J. Cleaner Prod. 2017;151:427–438. doi: 10.1016/j.jclepro.2017.03.084. DOI
Urík M., Hlodák M., Mikušová P., Matúš P. Potential of microscopic fungi isolated from mercury contaminated soils to accumulate and volatilize mercury (II) Water Air Soil Pollut. 2014;225:2219. doi: 10.1007/s11270-014-2219-z. DOI
Šimonovičová A., Nosalj S., Takáčová A., Mackul’Ak T., Jesenák K., Čerňanský S. Responses of Aspergillus niger to selected environmental factors. Nova Biotechnol. Chim. 2017;16:92–98. doi: 10.1515/nbec-2017-0013. DOI
Mulligan C.N., Kamali M. Bioleaching of copper and other metals from low-grade oxidized mining ores by Aspergillus niger. J. Appl. Chem. Biotechnol. 2003;78:497–503. doi: 10.1002/jctb.830. DOI
Urík M., Polák F., Bujdoš M., Miglierini M.B., Milová-Žiaková B., Farkas B., Goneková Z., Vojtková H., Matúš P. Antimony leaching from antimony-bearing ferric oxyhydroxides by filamentous fungi and biotransformation of ferric substrate. Sci. Total Environ. 2019;664:683–689. doi: 10.1016/j.scitotenv.2019.02.033. PubMed DOI
Hagarová I., Žemberyová M. Determination of arsenic in biological and environmental samples by AAS techniques. Chemické Listy. 2005;99:578–584.
Hagarová I. Speciation of arsenic in waters by AAS techniques. Chemické Listy. 2007;101:768–775.
Garrido-Hoyos S., Romero-Velazquez L. Synthesis of minerals with iron oxide and hydroxide contents as a sorption medium to remove arsenic from water for human consumption. Int. J. Environ. Res. Public Health. 2016;13:69. doi: 10.3390/ijerph13010069. PubMed DOI PMC
Farrell J., Chaudhary B.K. Understanding arsenate reaction kinetics with ferric hydroxides. Environ. Sci. Technol. 2013;47:8342–8347. doi: 10.1021/es4013382. PubMed DOI PMC
Grossl P.R., Eick M., Sparks D.L., Goldberg S., Ainsworth C.C. Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 1997;31:321–326. doi: 10.1021/es950654l. DOI
Farquhar M.L., Charnock J.M., Livens F.R., Vaughan D.J. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: An X-ray absorption spectroscopy study. Environ. Sci. Technol. 2002;36:1757–1762. doi: 10.1021/es010216g. PubMed DOI
Guo X., Du Y., Chen F., Park H.-S., Xie Y. Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH): EXAFS study. J. Colloid Interface Sci. 2007;314:427–433. doi: 10.1016/j.jcis.2007.05.071. PubMed DOI
Park J.H., Han Y.-S., Ahn J.S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Water Res. 2016;106:295–303. doi: 10.1016/j.watres.2016.10.006. PubMed DOI
Jacobson A.T., Fan M. Evaluation of natural goethite on the removal of arsenate and selenite from water. J. Environ. Sci. 2019;76:133–141. doi: 10.1016/j.jes.2018.04.016. PubMed DOI
Ladeira A.C., Ciminelli V.S. Adsorption and desorption of arsenic on an oxisol and its constituents. Water Res. 2004;38:2087–2094. doi: 10.1016/j.watres.2004.02.002. PubMed DOI
Dixit S., Hering J.G. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 2003;37:4182–4189. doi: 10.1021/es030309t. PubMed DOI
Huo L., Zeng X., Su S., Bai L., Wang Y. Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles. Sci. Rep. 2017;7:40765. doi: 10.1038/srep40765. PubMed DOI PMC
World Health Organization . Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum. World Health Organization; Geneva, Switzerland: 2017. PubMed
Acosta-Rodríguez I., Cárdenas-González J.F., Rodríguez Pérez A.S., Oviedo J.T., Martínez-Juárez V.M. Bioremoval of different heavy metals by the resistant fungal strain Aspergillus niger. Bioinorg. Chem. Appl. 2018;2018:1–7. doi: 10.1155/2018/3457196. PubMed DOI PMC
Urík M., Polák F., Bujdoš M., Pifková I., Kořenková L., Littera P., Matúš P. Aluminium leaching by heterotrophic microorganism Aspergillus niger: An acidic leaching? Arab. J. Sci. Eng. 2018;43:2369–2374. doi: 10.1007/s13369-017-2784-8. DOI
Milová-Žiaková B., Urík M., Boriová K., Bujdoš M., Kolenčík M., Mikušová P., Takáčová A., Matúš P. Fungal solubilization of manganese oxide and its significance for antimony mobility. Int. Biodeterior. Biodegrad. 2016;114:157–163. doi: 10.1016/j.ibiod.2016.06.011. DOI
Boriová K., Urík M., Bujdoš M., Pifková I., Matúš P. Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger’s exometabolites. Environ. Pollut. 2016;218:281–288. doi: 10.1016/j.envpol.2016.07.003. PubMed DOI
Urík M., Čerňanský S., Ševc J., Šimonovičová A., Littera P. Biovolatilization of arsenic by different fungal strains. Water Air Soil Pollut. 2007;186:337–342. doi: 10.1007/s11270-007-9489-7. DOI
Doku T., Belford E. The potential of Aspergillus fumigatus and Aspergillus niger in bioaccumulation of heavy metals from the Chemu Lagoon, Ghana. J. Appl. Biosci. 2015;94:8907–8914. doi: 10.4314/jab.v94i1.12. DOI
Šimonovičová A., Ferianc P., Vojtková H., Pangallo D., Hanajík P., Kraková L., Feketeová Z., Čerňanský S., Okenicová L., Žemberyová M., et al. Alkaline Technosol contaminated by former mining activity and its culturable autochthonous microbiota. Chemosphere. 2017;171:89–96. doi: 10.1016/j.chemosphere.2016.11.131. PubMed DOI PMC
Littera P., Urík M., Ševc J., Kolenčík M., Gardošová K., Molnárová M. Removal of arsenic from aqueous environments by native and chemically modified biomass of Aspergillus niger and Neosartorya fischeri. Environ. Technol. 2011;32:1215–1222. doi: 10.1080/09593330.2010.532510. PubMed DOI
Peťková K., Jurkovič L., Šimonovičová A., Čerňanský S. Potential of Aspergillus niger in bioremediation of contaminated soils. Int. Multidiscip. Sci. Geoconf. SGEM. 2013;1:757–764.
Čerňanský S., Urík M., Ševc J., Khun M. Biosorption and biovolatilization of arsenic by heat-resistant fungi. Environ. Sci. Pollut. Res. 2007;14:31–35. doi: 10.1065/espr2006.11.361. PubMed DOI
Kumar B.L., Gopal D.S. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech. 2015;5:867–876. doi: 10.1007/s13205-015-0293-6. PubMed DOI PMC
Polák F., Urík M., Bujdoš M., Kim H., Matúš P. Fungal bioextraction of iron from kaolin. Chem. Pap. 2019;73:3025–3029. doi: 10.1007/s11696-019-00896-6. DOI
Semerci N., Kunt B., Calli B. Phosphorus recovery from sewage sludge ash with bioleaching and electrodialysis. Int. Biodeterior. Biodegrad. 2019;144:104739. doi: 10.1016/j.ibiod.2019.104739. DOI
Gadd G.M. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 2000;11:271–279. doi: 10.1016/S0958-1669(00)00095-1. PubMed DOI
McDonald D.M., Webb J.A., Taylor J. Chemical stability of acid rock drainage treatment sludge and implications for sludge management. Environ. Sci. Technol. 2006;40:1984–1990. doi: 10.1021/es0515194. PubMed DOI
Fungal Mobilization of Selenium in the Presence of Hausmannite and Ferric Oxyhydroxides