Alkaline Technosol contaminated by former mining activity and its culturable autochthonous microbiota
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28006667
PubMed Central
PMC5267631
DOI
10.1016/j.chemosphere.2016.11.131
PII: S0045-6535(16)31674-5
Knihovny.cz E-zdroje
- Klíčová slova
- Alkaline Technosols, Autochthonous isolates, Microbial biomass, Potentially toxic elements,
- MeSH
- arsen toxicita MeSH
- Bacteria izolace a purifikace MeSH
- biomasa MeSH
- hornictví * MeSH
- houby izolace a purifikace MeSH
- látky znečišťující půdu toxicita MeSH
- mangan toxicita MeSH
- měď toxicita MeSH
- mikrobiota MeSH
- půdní mikrobiologie * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arsen MeSH
- látky znečišťující půdu MeSH
- mangan MeSH
- měď MeSH
Technosols or technogenic substrates contaminated by potentially toxic elements as a result of iron mining causes not only contamination of the surrounding ecosystem but may also lead to changes of the extent, abundance, structure and activity of soil microbial community. Microbial biomass were significantly inhibited mainly by exceeding limits of potentially toxic metals as arsenic (in the range of 343-511 mg/kg), copper (in the range of 7980-9227 mg/kg), manganese (in the range of 2417-2670 mg/kg), alkaline and strong alkaline pH conditions and minimal contents of organic nutrients. All of the 14 bacterial isolates, belonged to 4 bacterial phyla, Actinobacteria, Firmicutes; β- and γ-Proteobacteria. Thirteen genera and 20 species of microscopic filamentous fungi were recovered. The most frequently found species belonged to genera Aspergillus (A. clavatus, A. niger, A. flavus, A. versicolor, Aspergillus sp.) with the dominating A. niger in all samples, and Penicillium (P. canescens, P. chrysogenum, P. spinulosum, Penicillium sp.). Fungal plant pathogens occurred in all surface samples. These included Bjerkandera adustata, Bionectria ochloleuca with anamorph state Clonostachys pseudochloleuca, Lewia infectoria, Phoma macrostoma and Rhizoctonia sp.
Zobrazit více v PubMed
Abbas S.H., Ismail I.M., Mostafa T.M., Sulaymon A.H. Biosorption of heavy metals: a review. J. Chem. Sci. Technol. 2014;3:74–102.
Ali S.H., Alias S.A., Siang H.Y., Smykla J., Pang K.-L., Guo S.-Y., Convey P. Studies on diversity of soil microfungi in the Horsund area. Spitsb. Pol. Polar Res. 2013;34:39–54.
Alisawi W.A., Rahbarirad S., Walker K.A., Venter A.R., Docherty K.M., Szymczyna B.R. Identification of metabolites produced during the complete biodegradation of 1-butyl-3-ethyllimidazolium chloride by an enriched activated sludge microbial community. Chemosphere. 2017;167:53–61. PubMed
Amich J., Vicentefranuiera R., Leal F., Calera J.A. Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes. Eukaryot. Cell. 2010;9:424–437. PubMed PMC
Anjum F., Bhatti H.N., Asgher M., Shahid M. Leaching of metal ions from black shale by organic acids produced by Aspergillus Niger. Appl. Clay Sci. 2010;47:356–361.
Akmal M., Jianming X., Zhaojun L., Haizhen W., Huaiying Y. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere. 2005;60:508–514. PubMed
Asenio V., Vega F.A., Andrale M.L., Covelo E.F. Tree vegetation and waste amendments to improve the physical condition of copper mine soils. Chemosphere. 2013;90:603–610. PubMed
Baran A., Czech T., Wieczorek J. Chemical properties and toxicity of soils contaminated by mining activity. Ecotoxicol. 2014;23:1234–1244. PubMed PMC
Bates S.T., Nash T.H., Garcia-Pichel F. Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycol. 2012;104 535–361. PubMed
Bates S.T., Nash T.H., Sweat K.G., Garcia-Pichel F. Fungal communities of lichen-dominated biological soil crusts: diversity, relative microbial biomass, and their relationship to disturbance and crust cover. J. Arid. Environ. 2010;74:1192–1199.
Chao A., Chazdon R.L., Colwell R.K., Shen T.J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics. 2006;62:361–371. PubMed
Chesneau O., Morvan A., Grimont F., Labischinski H., El Solh N. Staphylococcus pasteuri sp. nov., isolated from human, animal, and food specimens. Int. J. Syst. Evol. Microbiol. 1993;43:237–244. PubMed
Davis D.H., Doudoroff M., Stanier R.Y., Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int. J. Syst. Evol. Microbiol. 1969;19:375–390.
Dugal S., Gangawane M. Metal tolerance and potential of Penicillium species for use in mycoremediation. J. Chem. Pharm. Res. 2012;4:2362–2366.
Ezzouhri L., Castro E., Moya M., Espinola F., Lairini K. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr. J. Microbiol. Res. 2009;3:35–48.
Feketeová Z., Hulejová Sládkovičová V., Mangová B., Pogányová A., Šimkovic I., Krumpál M. Biological properties of extremely acidic cyanide-laced mining waste. Ecotoxicology. 2016;25:202–212. PubMed
Ge C.R., Zhang Q.C. Microbial community structure and enzyme activities in a copper-polluted soils. Pedosphere. 2011;21:164–169.
Gostinčar C., Turk M. Extremotolerant fungi as genetic resources for biotechnology. Bioengineered. 2012;1(3):293–297. PubMed PMC
Gostinčar C., Gunde-Cimerman N., Turk M. Genetic resources of extremotolerant fungi: a method for identification of gene conferring stress tolerance. Biores. Technol. 2012;111:360–367. PubMed
Hafeez F., Spor A., Breuil M.C., Schwartz C., Martin-Laurnt F., Philippot L. Distribution of bacteria and nitrogen-cycling microbial communities along constructed Technosol depth-profiles. J. Hazard. Mater. 2012;231–232:88–97. PubMed
Hrivňáková K., Makovníková J., Barančíková G., Bezák P., Bezáková Z., Dodok R., Grečo V., Chĺpik J., Kobza J., Lištjak M., Mališ J., Píš V., Schlosserová J., Slávik O., Styk J., Širáň M. Research Institute for Soil Science and Conservation; Bratislava: 2011. Unified Workflow Analyzes of Soils (Output of the Research Project “Monitoring and Evaluation of the Properties of Soil in Slovakia and Potential for Their Development”) p. 136.
Horikoshi K. Alkaliphiles: some applications of their products fro biotechnology. Microbiol. Mol. Biol. Rev. 1999;63:735–750. PubMed PMC
Iram S., Ahmad I., Javed B., Yaqoob S., Akhtar K., Kazmi M.R., Badar-uz-Zaman Fungal tolerance to heavy metals. Pak. J. Bot. 2009;41:2583–2594.
Jacobs K., Wingfield M.J., Jacobs A., Wingfield B.D. A taxonomic re-evaluation of Phialocephala phycomyces. Can. J. Bot. 2001;79:110–117.
Jacobs A., Coetzee M.P.A., Wingfield B.D., Jacobs K., Wingfield M.J. Phylogenetic relationships among Phialocephala species and other ascomycetes. Mycol. 2003;95:637–645. PubMed
Jenkinson D.S., Ladd J.N. Microbial biomass in soil: measurement and turnover. In: Paul E.A., Ladd J.N., editors. Soil Biochemy. Marcel Dekker; New York: 1981. pp. 415–471.
Kanekar P.P., Nilegaonkar S.S., Sarnaik S.S., Kelkar A.S. Optimalization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Biores. Technol. 2002;85:87–93. PubMed
Kladwang W., Bhumirattana A., Hywel-Jones N. Alkaline-tolerant fungi from Thailand. Fungal Divers. 2003;13:69–83.
Klich M.A. Biogeography of Aspergillus species in soil and litter. Mycol. 2002;94:21–27. PubMed
Kosman E., Leonard K. Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol. Ecol. 2005;14:415–424. PubMed
Kota M.F., Hussaini A.A.S.A., Zulkharnain A., Roslan H.A. Bioremediation of crude oil by different fungal genera. Asian J. Plant Biol. 2014;2:11–18.
Krishna M.P., Varghese R., Babu A.V., Hatha A.A.M. Bioaccumulation of cadmium by Pseudomonas sp. isolated from metal polluted industrial region. Environ. Res. Eng. Manag. 2012;61:58–64.
Krokusová J. Analýza priestorového rozmiestnenia banských antropogénnych foriem v obci Slovinky. Acta Fac. Rer. Nat. Univ. Comen. Geogr. 2005;3:300–308.
Kubátová A., Prášil K. Species composition and diversity of fungi on anthropogenic substrata. Novit. Bot. Univ. Carol. 2008;19:41–44.
Kubátová A., Prášil K., Váňová M. Diversity of soil microscopic fungi on abandoned industrial deposits. Crypt. Mycol. 2002;23:205–219.
Lane D.J. 16S/23S rRNA sequencing, pp. 115–148. In: Stackebrandt E., Goodfellow M., editors. Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons; New York: 1991.
Levyk V., Maryschevych O., Brzezińska M., Włodarczyk T. Dehydrogenase activity of Technogenic soils of former sulphur mines (Yvaoriv and Nemyriv, Ukraine) Int. Agrophys. 2007;21:255–260.
Liao M., Chen Ch-L., Zeng L.-Sh, Huang Ch-Y. Influence of lead acetate on soil microbial biomass and community structure in two different soils with the growth of Chinese cabbage (Brassica chinensis) Chemosphere. 2007;66:1197–1205. PubMed
Lietão A.L. Potential of Penicillium species in the bioremediation field. Int. J. Environ. Res. Public Health. 2009;6:1393–1417. PubMed PMC
López-Archilla A.I., Marin I., Amils R. Microbial community composition and ecology of an acidic aquatic environment. The Tinto river, Spain. Microb. Ecol. 2001;41:20–35. PubMed
López-Archilla A.I., Gonzáles A.E., Terrón M.C., Amils R. Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can. J. Microbiol. 2004;50:923–934. PubMed
Mei X., Tian Ch, Dong Q., Liang Y. Influencing factors and process on in situ degradation of poly(butylene succinate) film by strain Bionectria ochroleuca BFM-X1 in soil. J. Environ. Prot. 2012;3:523–532.
Mlitan A.B., Alajtal A.I., Alsadawy A.M. Toxicity of heavy metals and microbial analysis of soil samples collected from the area around zliten cement factory. Open J. Air Pollut. 2013;2:25–28.
Muntyan M.S., Popova I.V., Bloch D.A., Skripnikova E.V., Ustiyan V.S. Energetics of alkalophilic representatives of the genus Bacillus. Biochem. (Moscow) 2005;70:137–142. PubMed
Nagai K., Suzuki K., Okada G. Studies on the distribution of alkalophilic and alkali-tolerant soil fungi II: fungal flora in two limestone caves in Japan. Mycosc. 1998;39:293–298.
Nagai K., Sakai T., Rantiatmodjo R.M., Suzuki K., Gams W., Okada G. Studies on the distribution of alkalophilic and alkali-tolerant soil fungi I. Mycosc. 1995;36:247–256.
Narancic T., Djokic L., Kenny S.T., O'Connor K.E., Radulovic V., Nikodinovic-Runic J., Vasijjevic B. J. Hazard. Mater. 2012;215–216:243–251. PubMed
Nishino S.F., Spain J.C. Biodegradation of 3-nitrotyrosine by Burkholderia sp. strain JS165 and Variovorax paradoxus JS171. Appl. Environ. Microbiol. 2006;72:1040–1044. PubMed PMC
Otenio M.H., Lopes da Silva M.T., Marques M., Roseiro J., Bidoia E. Benzene, toluene and xylene biodegradation by Pseudomonas putida CCMI 852. Braz. J. Microbiol. 2005;36:258–261.
Petrák M., Kučerová G., Tóth R., Lalinská-Voleková B., Šottník P., Jurkovič Ľ., Vozár J., Hiller E. Tailings impoundments Markušovce and Slovinky: application of the methodology for evaluation of impoundment sediments from ore processing on the model impoundments. Miner. Slovaca. 2011;45:125–130.
Piotrowska-Seget Z., Cycoń M., Kozdrój J. Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl. Soil. Ecol. 2005;28:237–246.
Rantsiou K., Iacumin L., Cantoni C., Comi G., Cocolin L. Ecology and characterization by molecular methods of Staphylococcus species isolated from fresh sausages. Int. J. Food Microbiol. 2005;97:277–284. PubMed
Rasool A., Irum S. Toxic metal effect on filamentous fungi isolated from the contaminated soil of Multan and Gujranwala. J. Biores. Manag. 2014;1:38–51.
Rastogi G., Sani R.K., Peyton B.M., Moberly J.G., Ginn T.R. Molecular studies on the microbial diversity associated with mining-impacted Coeur d’Alene River sediments. Microb. Ecol. 2009;58:129–139. PubMed
Ren W.X., Li P.-J., Geng Y., Li X.-J. Biological leaching of heavy metals from a contaminated soil by Aspergillus Niger. J. Hazard. Mater. 2009;167:164–169. PubMed
Roadcap G.S., Sanford R.A., Jin Q., Pardinas J.R., Bethke C.M. Extremely alkaline (pH > 12) ground water host diverse microbial community. Ground Water. 2006;44(4):511–517. PubMed
Satola B., Wűbbeler J.H., Steinbűchel A. Metabolic characteristics of the species Variovorax paradoxus. Appl. Microbiol. Biotchenol. 2013;97:541–560. PubMed
Satyanarayana T., Raghukumar Ch, Shivaji S. Extremophilic microbes. Diversity and perspectives. Curr. Sci. 2005;89:78–90.
Schinner F., Öhlinger R., Kandeler E., Margesin R. Springer; Berlin: 1993. Bodenbiologische Arbeitsmethoden. 389 pp.
Sheoran V., Sheoran A.S., Poonia P. Soil reclamation of abandoned mine land by revegetation: a review. Int. J. Soil Sediment Water. 2010;2(3) 1940–3259.
Šimonovičová A., Hlinková E., Chovanová K., Pangallo D. Influence of the environment on the morphological and biochemical characteristics of different Aspergillus Niger wild type strains. Indian J. Microbiol. 2013;53:187–193. PubMed PMC
Šimonovičová A., Pangallo D., Chovanová K., Kraková L. Microscopic fungi of Smolník stream sediments. Acta Envir. Univ. Comen. (Bratislava) 2013;21:60–68.
Šimonovičová A., Peťková K., Jurkovič Ľ., Ferianc P., Vojtková H., Remenár M., Kraková L., Pangallo D., Hiller E., Čerňanský S. Autochthonous microbiota in arsenic-bearing Technosols from Zemianske Kostoľany (Slovakia) and its potential for bioleaching and biovolatilization of arsenic. Water Air Soil Pollut. 2016;227:336.
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011;28:2731–2739. PubMed PMC
Tiago I., Chung A.P., Veríssimo A. Bacterial diversity in a nonsaline alkaline environment: heterothropic aerobic populations. Appl. Environ. Microbiol. 2004;70:7378–7387. PubMed PMC
Tóth R., Hiller E., Petrák M., Jurkovič Ľ., Šottník P., Vozár J., Peťková K. Tailings impoundments Markušovce and Slovinky: application of the methodology for evaluation of impoundment sediments from ore processing on the model impoundments. Min. Slov. 2013;45:125–130.
Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987;19:703–707.
Vojtková H., Janulková R., Švanová P. 12th Int. Multidiscip. Sci. GeoConf. SGEM 2012–4, 17.–23. 6. 2012. Bulgaria: Albena. 2012. Physiological aspects of metal tolerance in Pseudomonas bacteria isolated from polluted sites in Ostrava, Czech Republic; pp. 177–183.
Wang M., Markert B., Shen W., Chen W., Peng Ch, Ouyang Z. Microbial biomass carbon and enzyme activities of urban soils in Beijing. Environ. Sci. Pollut. Res. 2011;18:958–967. PubMed
White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: a Guide to Methods and Applications. Academic Press; New York: 1990. pp. 315–321.
World Reference Base for Soil Resources . FAO – ISRIC – ISSS; Rome: 2006. A Framework for International Classification, Correlation and Communication; p. 128.
Wright C.J., Coleman D.C. Cross-site comparison of soil microbial biomass, soil nutrient status, and nematode trophic groups. Pedobiol. 2000;44:2–23.
Yuangen Y., Campbell C.D., Clark L., Cameron, Paterson E. Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere. 2006;63:1942–1952. PubMed
Zhang W., Chen L., Zhang R., Lin K. Effects of decabromodiphenyl ether on lead mobility and microbial toxicity in soil. Chemosphere. 2015;122:99–104. PubMed
Zeng X., Wei S., Sun L., Jacques D.A., Tang J., Lian M., Ji Z., Wang J., Zhu J., Xu Z. Bioleaching of heavy metals from contaminated sediments by the Aspergillus Niger strain SY1. J. Soils Sediments. 2015;15:1029–1038.
Žemberyová M., Hagarová I., Zimová J., Barteková J., Kuss H.-M. Determination of molybdenum in extracts of soil and sewage sludge CRMs after fractionation by mean of BCR modified sequential extraction procedure. Talanta. 2010;82:582–586. PubMed
Žemberyová M., Okenicová L., Barteková J., Žemberyová M., Šimonovičová A., Gáplovská K. Bioaccumulation of heavy metals from aqueous solutions by live biomass of Aspergillus Niger wild type strains isolated from different environments. Fresen. Environ. Bull. 2014;23:597–602.
Aspergillus niger Environmental Isolates and Their Specific Diversity Through Metabolite Profiling