Genomic Characterization of Mutli-Drug Resistant Pseudomonas aeruginosa Clinical Isolates: Evaluation and Determination of Ceftolozane/Tazobactam Activity and Resistance Mechanisms
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35782142
PubMed Central
PMC9241553
DOI
10.3389/fcimb.2022.922976
Knihovny.cz E-zdroje
- Klíčová slova
- AmpC, Pseudomonas aeruginosa, beta lactamases, ceftolozane/tazobactam (C/T), porins,
- MeSH
- beta-laktamasy genetika MeSH
- cefalosporiny MeSH
- genomika MeSH
- multilokusová sekvenční typizace MeSH
- Pseudomonas aeruginosa * genetika MeSH
- tazobaktam farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-laktamasy MeSH
- cefalosporiny MeSH
- ceftolozane MeSH Prohlížeč
- tazobaktam MeSH
Resistance to ceftolozane/tazobactam (C/T) in Pseudomonas aeruginosa is a health concern. In this study, we conducted a whole-genome-based molecular characterization to correlate resistance patterns and β-lactamases with C/T resistance among multi-drug resistant P. aeruginosa clinical isolates. Resistance profiles for 25 P. aeruginosa clinical isolates were examined using disk diffusion assay. Minimal inhibitory concentrations (MIC) for C/T were determined by broth microdilution. Whole-genome sequencing was used to check for antimicrobial resistance determinants and reveal their genetic context. The clonal relatedness was evaluated using MLST, PFGE, and serotyping. All the isolates were resistant to C/T. At least two β-lactamases were detected in each with the blaOXA-4, blaOXA-10, blaOXA-50, and blaOXA-395 being the most common. blaIMP-15, blaNDM-1, or blaVIM-2, metallo-β-lactamases, were associated with C/T MIC >256 μg/mL. Eight AmpC variants were identified, and PDC-3 was the most common. We also determined the clonal relatedness of the isolates and showed that they grouped into 11 sequence types (STs) some corresponding to widespread clonal complexes (ST111, ST233, and ST357). C/T resistance was likely driven by the acquired OXA β-lactamases such as OXA-10, and OXA-50, ESBLs GES-1, GES-15, and VEB-1, and metallo- β-lactamases IMP-15, NDM-1, and VIM-2. Collectively, our results revealed C/T resistance determinants and patterns in multi-drug resistant P. aeruginosa clinical isolates. Surveillance programs should be implemented and maintained to better track and define resistance mechanisms and how they accumulate and interact.
Zobrazit více v PubMed
Alcock B. P., Raphenya A. R., Lau T. T. Y., Tsang K. K., Bouchard M., Edalatmand A., et al. . (2020). CARD 2020: Antibiotic Resistome Surveillance With the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 48, D517–D525. doi: 10.1093/nar/gkz935 PubMed DOI PMC
Araj G. F., Berjawi D. M., Musharrafieh U., Beayni N. K. E. (2020). Activity of Ceftolozane/Tazobactam Against Commonly Encountered Antimicrobial Resistant Gram-Negative Bacteria in Lebanon. J. Infect. Develop. Ctries. 14, 559–564. doi: 10.3855/jidc.12368 PubMed DOI
Aubert D., Girlich D., Naas T., Nagarajan S., Nordmann P. (2004). Functional and Structural Characterization of the Genetic Environment of an Extended-Spectrum β-Lactamase blaVEB Gene From a Pseudomonas aeruginosa Isolate Obtained in India. Antimicrob. Agents Chemother. 48, 3284–3290. doi: 10.1128/AAC.48.9.3284-3290.2004 PubMed DOI PMC
Aziz R. K., Devoid S., Disz T., Edwards R. A., Henry C. S., Olsen G. J., et al. . (2012). SEED Servers: High-Performance Access to the SEED Genomes, Annotations, and Metabolic Models. PloS One 7, e48053. doi: 10.1371/journal.pone.0048053 PubMed DOI PMC
Bassetti M., Castaldo N., Cattelan A., Mussini C., Righi E., Tascini C., et al. . (2019). Ceftolozane/tazobactam for the Treatment of Serious Pseudomonas aeruginosa Infections: A Multicentre Nationwide Clinical Experience. Int. J. Antimicrobial. Agents 53, 408–415. doi: 10.1016/j.ijantimicag.2018.11.001 PubMed DOI
Berrazeg M., Jeannot K., Ntsogo Enguéné V. Y., Broutin I., Loeffert S., Fournier D., et al. . (2015). Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Antimicrob. Agents Chemother. 59, 6248–6255. doi: 10.1128/AAC.00825-15 PubMed DOI PMC
Cabot G., Bruchmann S., Mulet X., Zamorano L., Moyà B., Juan C., et al. . (2014). Pseudomonas aeruginosa Ceftolozane-Tazobactam Resistance Development Requires Multiple Mutations Leading to Overexpression and Structural Modification of AmpC. Antimicrob. Agents Chemother. 58, 3091–3099. doi: 10.1128/AAC.02462-13 PubMed DOI PMC
Carattoli A., Zankari E., García-Fernández A., Voldby Larsen M., Lund O., Villa L., et al. . (2014). In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 58, 3895–3903. doi: 10.1128/AAC.02412-14 PubMed DOI PMC
Chin C.-S., Alexander D. H., Marks P., Klammer A. A., Drake J., Heiner C., et al. . (2013). Nonhybrid, Finished Microbial Genome Assemblies From Long-Read SMRT Sequencing Data. Nat. Methods 10, 563–569. doi: 10.1038/nmeth.2474 PubMed DOI
CLSI . (2022). Performance Standards for Antimicrobial Susceptibility Testing. Available at: https://clsi.org/standards/products/free-resources/access-our-free-resources/.
Ding Y., Teo J. W. P., Drautz-Moses D. I., Schuster S. C., Givskov M., Yang L. (2018). Acquisition of Resistance to Carbapenem and Macrolide-Mediated Quorum Sensing Inhibition by Pseudomonas aeruginosa via Icetn43716385. Commun. Biol. 1, 1–10. doi: 10.1038/s42003-018-0064-0 PubMed DOI PMC
EUCAST . (2022). The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 12.0 (European Committee on Antimicrobial Susceptibility Testing; ). Available at: https://www.eucast.org/clinical_breakpoints/ (Accessed April 14, 2022).
Farrell D. J., Sader H. S., Flamm R. K., Jones R. N. (2014). Ceftolozane/tazobactam Activity Tested Against Gram-Negative Bacterial Isolates From Hospitalised Patients With Pneumonia in US and European Medical Centres, (2012). Int. J. Antimicrob. Agents 43, 533–539. doi: 10.1016/j.ijantimicag.2014.01.032 PubMed DOI
Fernández-Esgueva M., López-Calleja A. I., Mulet X., Fraile-Ribot P. A., Cabot G., Huarte R., et al. . (2020). Characterization of AmpC β-Lactamase Mutations of Extensively Drug-Resistant Pseudomonas aeruginosa Isolates That Develop Resistance to Ceftolozane/Tazobactam During Therapy. Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) 38, 474–478. doi: 10.1016/j.eimc.2020.01.017 PubMed DOI
Fraile-Ribot P. A., Cabot G., Mulet X., Periañez L., Martín-Pena M. L., Juan C., et al. . (2018). Mechanisms Leading to In Vivo Ceftolozane/Tazobactam Resistance Development During the Treatment of Infections Caused by MDR Pseudomonas aeruginosa . J. Antimicrob. Chemother. 73, 658–663. doi: 10.1093/jac/dkx424 PubMed DOI
Garza-Ramos J. U., Sanchez-Martinez G., Barajas J. M., Suarez S., Sanchez-Perez A., Rojas-Moreno T., et al. . (2010). Variability of the blaIMP-15-Containing Integrons, Highly Related to In95, on an Endemic Clone of Pseudomonas aeruginosa in Mexico. Microbial. Drug Resist 16, 191–195. doi: 10.1089/mdr.2010.0017 PubMed DOI
Gellatly S. L., Hancock R. E. W. (2013). Pseudomonas aeruginosa: New Insights Into Pathogenesis and Host Defenses. Pathog. Dis. 67, 159–173. doi: 10.1111/2049-632X.12033 PubMed DOI
Giacobbe D. R., Bassetti M., De Rosa F. G., Del Bono V., Grossi P. A., Menichetti F., et al. . (2018). Ceftolozane/tazobactam: Place in Therapy. Expert Rev. Anti Infect. Ther. 16, 307–320. doi: 10.1080/14787210.2018.1447381 PubMed DOI
Haidar G., Philips N. J., Shields R. K., Snyder D., Cheng S., Potoski B. A., et al. . (2017). Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Clin. Infect. Dis. 65, 110. doi: 10.1093/cid/cix182 PubMed DOI PMC
Hirsch E. B., Brigman H. V., Zucchi P. C., Chen A., Anderson J. C., Eliopoulos G. M., et al. . (2020). Ceftolozane-Tazobactam and Ceftazidime-Avibactam Activity Against β-Lactam-Resistant Pseudomonas aeruginosa and Extended-Spectrum β-Lactamase-Producing Enterobacterales Clinical Isolates From U.S. Medical Centres. J. Global Antimicrob. Resistance 22, 689–694. doi: 10.1016/j.jgar.2020.04.017 PubMed DOI
Humphries R. M., Hindler J. A., Wong-Beringer A., Miller S. A. (2017). Activity of Ceftolozane-Tazobactam and Ceftazidime-Avibactam Against Beta-Lactam-Resistant Pseudomonas aeruginosa Isolates. Antimicrob. Agents Chemother. 61, e01858–e01817. doi: 10.1128/AAC.01858-17 PubMed DOI PMC
Juan C., Zamorano L., Pérez J. L., Ge Y., Oliver A. (2010). Activity of a New Antipseudomonal Cephalosporin, CXA-101 (FR264205), Against Carbapenem-Resistant and Multidrug-Resistant Pseudomonas aeruginosa Clinical Strains. Antimicrob. Agents Chemother. 54, 846–851. doi: 10.1128/AAC.00834-09 PubMed DOI PMC
Karlowsky J. A., Lob S. H., Young K., Motyl M. R., Sahm D. F. (2021). Activity of Ceftolozane/Tazobactam Against Gram-Negative Isolates From Patients With Lower Respiratory Tract Infections – SMART United States 2018–2019. BMC Microbiol. 21, 74. doi: 10.1186/s12866-021-02135-z PubMed DOI PMC
Langmead B., Salzberg S. L. (2012). Fast Gapped-Read Alignment With Bowtie 2. Nat. Methods 9, 357–359. doi: 10.1038/nmeth.1923 PubMed DOI PMC
Larsen M. V., Cosentino S., Rasmussen S., Friis C., Hasman H., Marvig R. L., et al. . (2012). Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. J. Clin. Microbiol. 50, 1355–1361. doi: 10.1128/JCM.06094-11 PubMed DOI PMC
Li H., Durbin R. (2010). Fast and Accurate Long-Read Alignment With Burrows-Wheeler Transform. Bioinformatics 26, 589–595. doi: 10.1093/bioinformatics/btp698 PubMed DOI PMC
Lister P. D., Wolter D. J., Hanson N. D. (2009). Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms. Clin. Microbiol. Rev. 22, 582–610. doi: 10.1128/CMR.00040-09 PubMed DOI PMC
Livermore D. M., Mushtaq S., Ge Y., Warner M. (2009). Activity of Cephalosporin CXA-101 (FR264205) Against Pseudomonas aeruginosa and Burkholderia Cepacia Group Strains and Isolates. Int. J. Antimicrob. Agents 34, 402–406. doi: 10.1016/j.ijantimicag.2009.03.021 PubMed DOI
López-Causapé C., Cabot G., del Barrio-Tofiño E., Oliver A. (2018). The Versatile Mutational Resistome of Pseudomonas aeruginosa . Front. Microbiol. 9. doi: 10.3389/fmicb.2018.00685 PubMed DOI PMC
Maraolo A. E., Mazzitelli M., Trecarichi E. M., Buonomo A. R., Torti C., Gentile I. (2020). Ceftolozane/tazobactam for Difficult-to-Treat Pseudomonas aeruginosa Infections: A Systematic Review of its Efficacy and Safety for Off-Label Indications. Int. J. Antimicrob. Agents 55, 105891. doi: 10.1016/j.ijantimicag.2020.105891 PubMed DOI
Maurya A. P., Dhar D., Basumatary M. K., Paul D., Ingti B., Choudhury D., et al. . (2017). Expansion of Highly Stable blaOXA-10 β-Lactamase Family Within Diverse Host Range Among Nosocomial Isolates of Gram-Negative Bacilli Within a Tertiary Referral Hospital of Northeast India. BMC Res. Notes 10, 145. doi: 10.1186/s13104-017-2467-2 PubMed DOI PMC
Moghnieh R., Araj G. F., Awad L., Daoud Z., Mokhbat J. E., Jisr T., et al. . (2019). A Compilation of Antimicrobial Susceptibility Data From a Network of 13 Lebanese Hospitals Reflecting the National Situation During 2015–2016. Antimicrobial. Resist. Infect. Control 8, 41. doi: 10.1186/s13756-019-0487-5 PubMed DOI PMC
Moyá B., Beceiro A., Cabot G., Juan C., Zamorano L., Alberti S., et al. . (2012). Pan-β-Lactam Resistance Development in Pseudomonas aeruginosa Clinical Strains: Molecular Mechanisms, Penicillin-Binding Protein Profiles, and Binding Affinities. Antimicrob. Agents Chemother. 56, 4771–4778. doi: 10.1128/AAC.00680-12 PubMed DOI PMC
Oliver A., Mulet X., López-Causapé C., Juan C. (2015). The Increasing Threat of Pseudomonas aeruginosa High-Risk Clones. Drug Resist. Updates 21–22, 41–59. doi: 10.1016/j.drup.2015.08.002 PubMed DOI
O’Neall D., Juhász E., Tóth Á., Urbán E., Szabó J., Melegh S., et al. . (2020). Ceftazidime-Avibactam and Ceftolozane-Tazobactam Susceptibility of Multidrug Resistant Pseudomonas aeruginosa Strains in Hungary. Acta Microbiol. Immunol. Hung. 67, 61–65. doi: 10.1556/030.2020.01152 PubMed DOI
Ortiz de la Rosa J. M., Nordmann P., Poirel L. (2019). ESBLs and Resistance to Ceftazidime/Avibactam and Ceftolozane/Tazobactam Combinations in Escherichia Coli and Pseudomonas aeruginosa . J. Antimicrob. Chemother. 74, 1934–1939. doi: 10.1093/jac/dkz149 PubMed DOI
Papagiannitsis C. C., Medvecky M., Chudejova K., Skalova A., Rotova V., Spanelova P., et al. . (2017). Molecular Characterization of Carbapenemase-Producing Pseudomonas aeruginosa of Czech Origin and Evidence for Clonal Spread of Extensively Resistant Sequence Type 357 Expressing IMP-7 Metallo-β-Lactamase. Antimicrob. Agents Chemother. 61, e01811–e01817. doi: 10.1128/AAC.01811-17 PubMed DOI PMC
Pogue J. M., Bonomo R. A., Kaye K. S. (2019). Ceftazidime/Avibactam, Meropenem/Vaborbactam, or Both? Clinical and Formulary Considerations. Clin. Infect. Dis. 68, 519–524. doi: 10.1093/cid/ciy576 PubMed DOI
Poirel L., Lambert T., Türkoglü S., Ronco E., Gaillard J.-L., Nordmann P. (2001). Characterization of Class 1 Integrons From Pseudomonas aeruginosa That Contain the blaVIM-2carbapenem-Hydrolyzing β-Lactamase Gene and of Two Novel Aminoglycoside Resistance Gene Cassettes. Antimicrob. Agents Chemother. 45, 546–552. doi: 10.1128/AAC.45.2.546-552.2001 PubMed DOI PMC
Rodríguez-Martínez J.-M., Poirel L., Nordmann P. (2009). Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa . Antimicrob. Agents Chemother. 53, 4783–4788. doi: 10.1128/AAC.00574-09 PubMed DOI PMC
Sid Ahmed M. A., Abdel Hadi H., Hassan A. A. I., Abu Jarir S., Al-Maslamani M. A., Eltai N. O., et al. . (2019). Evaluation of In Vitro Activity of Ceftazidime/Avibactam and Ceftolozane/Tazobactam Against MDR Pseudomonas aeruginosa Isolates From Qatar. J. Antimicrob. Chemother. 74, 3497–3504. doi: 10.1093/jac/dkz379 PubMed DOI PMC
Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. (2006). ISfinder: The Reference Centre for Bacterial Insertion Sequences. Nucleic Acids Res. 34, D32–D36. doi: 10.1093/nar/gkj014 PubMed DOI PMC
Sligl W. I., Dragan T., Smith S. W. (2015). Nosocomial Gram-Negative Bacteremia in Intensive Care: Epidemiology, Antimicrobial Susceptibilities, and Outcomes. Int. J. Infect. Dis. 37, 129–134. doi: 10.1016/j.ijid.2015.06.024 PubMed DOI
Strãut M., Dinu S., Oprea M., Drãgulescu E., Lixandru B., Surdeanu M. (2018). Genetic Diversity of Structures Surrounding Bla Genes Identified in Pseudomonas aeruginosa Clinical Isolates From Bucharest, Romania. Bucharest, Romania. Rom. Arch. Microbiol. Imm. 77 (1), 16–27.
Subedi D., Vijay A. K., Kohli G. S., Rice S. A., Willcox M. (2018). Nucleotide Sequence Analysis of NPS-1 β-Lactamase and a Novel Integron (In1427)-Carrying Transposon in an MDR Pseudomonas aeruginosa Keratitis Strain. J. Antimicrob. Chemother. 73, 1724–1726. doi: 10.1093/jac/dky073 PubMed DOI
Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D. L., et al. . (2018). Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 18, 318–327. doi: 10.1016/S1473-3099(17)30753-3 PubMed DOI
Taiaroa G., Samuelsen Ø., Kristensen T., Økstad O. A. L., Heikal A. (2018). Complete Genome Sequence of Pseudomonas aeruginosa K34-7, a Carbapenem-Resistant Isolate of the High-Risk Sequence Type 233. Microbiol. Resour. Announce. 7, e00886–e00818. doi: 10.1128/MRA.00886-18 PubMed DOI PMC
Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., et al. . (1995). Interpreting Chromosomal DNA Restriction Patterns Produced by Pulsed-Field Gel Electrophoresis: Criteria for Bacterial Strain Typing. J. Clin. Microbiol. 33, 2233–2239. doi: 10.1128/jcm.33.9.2233-2239.1995 PubMed DOI PMC
Thrane S. W., Taylor V. L., Lund O., Lam J. S., Jelsbak L. (2016). Application of Whole-Genome Sequencing Data for O-Specific Antigen Analysis and In Silico Serotyping of Pseudomonas aeruginosa Isolates. J. Clin. Microbiol. 54, 1782–1788. doi: 10.1128/JCM.00349-16 PubMed DOI PMC
van Duin D., Bonomo R. A. (2016). Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-Generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 63, 234–241. doi: 10.1093/cid/ciw243 PubMed DOI PMC
Walker B. J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., et al. . (2014). Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PloS One 9, e112963. doi: 10.1371/journal.pone.0112963 PubMed DOI PMC
Weiner L. M., Webb A. K., Limbago B., Dudeck M. A., Patel J., Kallen A. J., et al. . (2016). Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 37, 1288–1301. doi: 10.1017/ice.2016.174 PubMed DOI PMC
Wheeler D. L., Church D. M., Federhen S., Lash A. E., Madden T. L., Pontius J. U., et al. . (2003). Database Resources of the National Center for Biotechnology. Nucleic Acids Res. 31, 28–33. doi: 10.1093/nar/gkg033 PubMed DOI PMC
Winsor G. L., Griffiths E. J., Lo R., Dhillon B. K., Shay J. A., Brinkman F. S. L. (2016). Enhanced Annotations and Features for Comparing Thousands of Pseudomonas Genomes in the Pseudomonas Genome Database. Nucleic Acids Res. 44, D646–D653. doi: 10.1093/nar/gkv1227 PubMed DOI PMC
Woodford N., Turton J. F., Livermore D. M. (2011). Multiresistant Gram-Negative Bacteria: The Role of High-Risk Clones in the Dissemination of Antibiotic Resistance. FEMS Microbiol. Rev. 35, 736–755. doi: 10.1111/j.1574-6976.2011.00268.x PubMed DOI
Wright H., Bonomo R. A., Paterson D. L. (2017). New Agents for the Treatment of Infections With Gram-Negative Bacteria: Restoring the Miracle or False Dawn? Clin. Microbiol. Infect. 23, 704–712. doi: 10.1016/j.cmi.2017.09.001 PubMed DOI
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., et al. . (2012). Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 67, 2640–2644. doi: 10.1093/jac/dks261 PubMed DOI PMC
Zavascki A. P., Carvalhaes C. G., Picão R. C., Gales A. C. (2010). Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter Baumannii: Resistance Mechanisms and Implications for Therapy. Expert Rev. Anti Infect. Ther. 8, 71–93. doi: 10.1586/eri.09.108 PubMed DOI