On the bioprotective effects of 3-hydroxybutyrate: Thermodynamic study of binary 3HB-water systems

. 2023 Feb 07 ; 122 (3) : 460-469. [epub] 20230107

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36617191
Odkazy

PubMed 36617191
PubMed Central PMC9941717
DOI 10.1016/j.bpj.2023.01.004
PII: S0006-3495(23)00004-8
Knihovny.cz E-zdroje

Microorganisms must face various inconvenient conditions; therefore, they developed several approaches for protection. Such a strategy also involves the accumulation of compatible solutes, also called osmolytes. It has been proved that the monomer unit 3-hydroxybutyrate (3HB), which is present in sufficient concentration in poly(3-hydroxybutyrate) (PHB)-accumulating cells, serves as a chemical chaperone protecting enzymes against heat and oxidative stress and as a cryoprotectant for enzymes, bacterial cells, and yeast. The stress robustness of the cells is also strongly dependent on the behavior and state of intracellular water, especially during stress exposure. For a better understanding of the protective mechanism and effect of strongly hydrophilic 3HB in solutions at a wide range of temperatures, a binary phase diagram of system sodium 3HB (Na3HB)-water in equilibrium and the state diagrams showing the glass transitions in the system were constructed. To investigate the activity of water in various compositions of the Na3HB/water system, three experimental techniques have been used (dynamic water sorption analysis, water activity measurements, and sorption calorimetry). First, Na3HB proved its hydrophilic nature, which is very comparable with known compatible solutes (trehalose). Results of differential scanning calorimetry demonstrated that Na3HB is also highly effective in depressing the freezing point and generating a large amount of nonfrozen water (1.35 g of water per gram of Na3HB). Therefore, Na3HB represents a very effective cryoprotectant that can be widely used for numerous applications.

Zobrazit více v PubMed

Da Costa M.S., Santos H., Galinski E.A. In: Biotechnology of Extremophiles. Antranikian G., editor. Springer/Berlin; 1998. An overview of the role and diversity of compatible solutes in Bacteria and Archaea; pp. 117–153. PubMed

Fuller B.J. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett. 2004;25:375–388. PubMed

Göller K., A Galinski E. Protection of a model enzyme lactate dehydrogenase against heat, urea and freeze-thaw treatment by compatible solute additives. J. Mol. Catal. B. Enzym. 1999;7:37–45. doi: 10.1016/S1381-11779900043-0. DOI

Andersson M.M., Breccia J.D., Hatti-Kaul R. Stabilizing effect of chemical additives against oxidation of lactate dehydrogenase. Biotechnol. Appl. Biochem. 2000;32:145–153. doi: 10.1042/BA20000014. PubMed DOI

Van-Thuoc D., Hashim S.O., et al. Mamo G. Ectoine-mediated protection of enzyme from the effect of pH and temperature stress: a study using Bacillus halodurans xylanase as a model. Appl. Microbiol. Biotechnol. 2013;97:6271–6278. doi: 10.1007/s00253-012-4528-8. PubMed DOI

Jain N.K., Roy I. Effect of trehalose on protein structure. Protein Sci. 2009;18:24–36. doi: 10.1002/pro.3. PubMed DOI PMC

Obruca S., Sedlacek P., et al. Koller M. Novel unexpected functions of PHA granules. Appl. Microbiol. Biotechnol. 2020;104:4795–4810. doi: 10.1007/s00253-020-10568-1. PubMed DOI

Wu D., He J., et al. Yu Z. Proteomic analysis reveals the strategies of Bacillus thuringiensis YBT – for survival under long-term heat stress. Proteomics. 2011;11:2580–2591. doi: 10.1002/pmic.201000392. PubMed DOI

Sedlacek P., Slaninova E., et al. Obruca S. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnol. 2019;49:129–136. doi: 10.1016/j.nbt.2018.10.005. PubMed DOI

Slaninova E., Sedlacek P., et al. Obruca S. Light Scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl. Microbiol. Biotechnol. 2018;102:1923–1931. doi: 10.1007/s00253-018-8760-8. PubMed DOI

Kadouri D., Jurkevitch E., et al. Castro-Sowinski S. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol. 2005;31:55–67. doi: 10.1080/10408410590899228. PubMed DOI

Obruca S., Sedlacek P., et al. Marova I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly 3-hydroxybutyrate accumulating cells. Appl. Microbiol. Biotechnol. 2016;100:1365–1376. doi: 10.1007/s00253-015-7162-4. PubMed DOI

Soto G., Setten L., et al. Ayub N.D. Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Extremophiles. 2012;16:455–462. doi: 10.1007/s00792-012-0445-0. PubMed DOI

Obruca S., Sedlacek P., et al. Marova I. Accumulation of poly 3-hydroxybutyrate helps bacterial cells to survive freezing. PLoS One. 2016;11:e0157778. doi: 10.1371/journal.pone.0157778. PubMed DOI PMC

Sinclair B.J., Renault D. Intracellular ice formation in insects: unresolved after 50years? Comp. Biochem. Physiol. Mol. Integr. Physiol. 2010;155:14–18. doi: 10.1016/j.cbpa.2009.10.026. PubMed DOI

Mazur P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 1984;247:C125–C142. doi: 10.1152/ajpcell.1984.247.3.C125. PubMed DOI

Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/S1360-13850202312-9. PubMed DOI

Greenspan L. Humidity fixed-points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. A Phys. Chem. 1977;81A:89–96.

Wadsö L., Markova N. A method to simultaneously determine sorption isotherms and sorption enthalpies with a double twin microcalorimeter. Rev. Sci. Instrum. 2002;73:2743–2754. doi: 10.1063/1.1484159. DOI

Kocherbitov V. A new formula for accurate calculation of water activity in sorption calorimetric experiments. Thermochim. Acta. 2004;414:43–45. doi: 10.1016/j.tca.2003.11.011. DOI

Roe K.D., Labuza T.P. Glass transition and crystallization of amorphous trehalose-sucrose mixtures. Int. J. Food Prop. 2005;8:559–574. doi: 10.1080/10942910500269824. DOI

Lammert A.M., Schmidt S.J., Day G.A. Water activity and solubility of trehalose. Food Chem. 1998;61:139–144. doi: 10.1016/S0308-81469700132-5. DOI

Galmarini M.V., Chirife J., et al. Pérez A. Determination and correlation of the water activity of unsaturated, supersaturated and saturated trehalose solutions. LWT-Food Sci. Technol. 2008;41:628–631. doi: 10.1016/j.lwt.2007.04.007. DOI

Roberts C.J., Franks F. Crystalline and amorphous phases in the binary system water–β, β-trehalose. J. Chem. Soc. Faraday Trans. 1996;92:1337–1343. doi: 10.1039/FT9969201337. DOI

Chen T., Fowler A., Toner M. Literature review: supplemented phase diagram of the trehalose–water binary mixture. Cryobiology. 2000;40:277–282. doi: 10.1006/cryo.2000.2244. PubMed DOI

Mathlouthi M., Reiser P. First edition. Springer Science & Business Media; 1995. Sucrose: Properties and Application.

Nakagawa H., Oyama T. Molecular basis of water activity in glycerol–water mixtures. Front. Chem. 2019;7:731. doi: 10.3389/fchem.2019.00731. PubMed DOI PMC

Green J.L., Angell C.A. Phase relation and vitrification in saccharide-water solution and the trehalose anomaly. J. Phys. Chem. 1989;93:2880–2882.

Miller D.P., de Pablo J.J., Corti H. Thermophysical properties of trehalose and its concentrated aqueous solutions. Pharm. Res. 1997;14:578–590. doi: 10.1023/A:1012192725996. PubMed DOI

Nicolajsen H., Hvidt A. Phase behaviour of the system trehalose-NaCl-water. Cryobiology. 1994;31:199–205. doi: 10.1006/cryo.1994.1024. DOI

Young F.E., Jones F.T. Sucrose hydrates. The sucrose–water phase diagram. J. Phys. Chem. 1949;53:1334–1350.

Elbein A.D., Pan Y.T., et al. Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13:17–27. doi: 10.1093/glycob/cwg047. PubMed DOI

Goff H.D., Sahagian M.E. Glass transitions in aqueous carbohydrate solutions and their relevance to frozen food stability. Thermochim. Acta. 1996;280-281:449–464. doi: 10.1016/0040-60319502656-8. DOI

Xu M., Chen G., et al. Zhang S. Study on the unfrozen water quantity of maximally freeze-concentrated solutions for multicomponent lyoprotectants. J. Pharm. Sci. 2017;106:83–91. doi: 10.1016/j.xphs.2016.05.007. PubMed DOI

McNeil C.A., Pramfalk C., et al. Hodson L. The storage stability and concentration of acetoacetate differs between blood fractions. Clin. Chim. Acta. 2014;433:278–283. doi: 10.1016/j.cca.2014.03.033. PubMed DOI

Handrick R., Reinhardt S., et al. Jendrossek D. The “intracellular” poly3-hydroxybutyrate PHB depolymerase of Rhodospirillum rubrum is a periplasm-located protein with specificity for native PHB and with structural similarity to extracellular PHB depolymerases. J. Bacteriol. 2004;186:7243–7253. doi: 10.1128/JB.186.21.7243-7253.2004. PubMed DOI PMC

Hubálek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology. 2003;46:205–229. doi: 10.1016/S0011-22400300046-4. PubMed DOI

MacDonald G.A., Lanier T.C. In: Quality in Frozen Food. Erickson M.C., Hung Y.C., editors. Springer; 1997. Cryoprotectants for improving frozen-food quality; pp. 197–232.

Maity T., Saxena A., Raju P.S. Use of hydrocolloids as cryoprotectant for frozen foods. Crit. Rev. Food Sci. Nutr. 2018;58:420–435. doi: 10.1080/10408398.2016.1182892. PubMed DOI

Tokiwa Y., Ugwu C.U. Biotechnological production of R-3-hydroxybutyric acid monomer. J. Biotechnol. 2007;132:264–272. doi: 10.1016/j.jbiotec.2007.03.015. PubMed DOI

Uefuji M., Kasuya K.I., Doi Y. Enzymatic degradation of polyR-3-hydroxybutyrate: secretion and properties of PHB depolymerase from Pseudomonas stutzeri. Polym. Degrad. Stab. 1997;58:275–281. doi: 10.1016/S0141-39109700058-X. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...