Molecular Characterization of Carbapenemase-Producing Pseudomonas aeruginosa of Czech Origin and Evidence for Clonal Spread of Extensively Resistant Sequence Type 357 Expressing IMP-7 Metallo-β-Lactamase
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, multicentrická studie
PubMed
28993328
PubMed Central
PMC5700319
DOI
10.1128/aac.01811-17
PII: AAC.01811-17
Knihovny.cz E-zdroje
- Klíčová slova
- GES, Illumina sequencing, ST111, ST235, VIM, class 1 integrons, genomic islands (GIs), integrative conjugative element (ICE),
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální chromozomy chemie MeSH
- beta-laktamasy genetika metabolismus MeSH
- epidemiologické monitorování MeSH
- exprese genu MeSH
- genomové ostrovy MeSH
- genotyp MeSH
- incidence MeSH
- integrony MeSH
- izoenzymy genetika metabolismus MeSH
- karbapenemy farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- multilokusová sekvenční typizace MeSH
- nemocnice MeSH
- pseudomonádové infekce epidemiologie mikrobiologie MeSH
- Pseudomonas aeruginosa účinky léků enzymologie genetika izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta-lactamase IMP-7 protein, Pseudomonas aeruginosa MeSH Prohlížeč
- beta-laktamasy MeSH
- izoenzymy MeSH
- karbapenemy MeSH
The objective of this study was to perform molecular surveillance for assessing the spread of carbapenemase-producing Pseudomonas aeruginosa in Czech hospitals. One hundred thirty-six carbapenemase-producing isolates were recovered from 22 hospitals located throughout the country. Sequence type 357 (ST357) dominated (n = 120) among carbapenemase producers. One hundred seventeen isolates produced IMP-type (IMP-7 [n = 116] and IMP-1 [n = 1]) metallo-β-lactamases (MβLs), 15 produced the VIM-2 MβL, and the remaining isolates expressed the GES-5 enzyme. The blaIMP-like genes were located in three main integron types, with In-p110-like being the most prevalent (n = 115). The two other IMP-encoding integrons (In1392 and In1393) have not been described previously. blaVIM-2-carrying integrons included In59-like, In56, and a novel element (In1391). blaGES-5 was carried by In717. Sequencing data showed that In-p110-like was associated with a Tn4380-like transposon inserted in genomic island LESGI-3 in the P. aeruginosa chromosome. The other integrons were also integrated into the P. aeruginosa chromosome. These findings indicated the clonal spread of ST357 P. aeruginosa, carrying the IMP-7-encoding integron In-p110, in Czech hospitals. Additionally, the sporadic emergence of P. aeruginosa producing different carbapenemase types, associated with divergent or novel integrons, punctuated the ongoing evolution of these bacteria.
Zobrazit více v PubMed
Driscoll JA, Brody SL, Kollef MH. 2007. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67:351–368. doi:10.2165/00003495-200767030-00003. PubMed DOI
Lister PD, Wolter DJ, Hanson ND. 2009. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610. doi:10.1128/CMR.00040-09. PubMed DOI PMC
Andrade SS, Jones RN, Gales AC, Sader HS. 2003. Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997–2001). J Antimicrob Chemother 52:140–141. doi:10.1093/jac/dkg270. PubMed DOI
Breidenstein EBM, de la Fuente-Nunez C, Hancock REW. 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426. doi:10.1016/j.tim.2011.04.005. PubMed DOI
Pasteran F, Faccone D, Gomez S, De Bunder S, Spinelli F, Rapoport M, Petroni A, Galas M, Corso A, Pseudomonas aeruginosa KPC Group. 2012. Detection of an international multiresistant clone belonging to sequence type 654 involved in the dissemination of KPC-producing Pseudomonas aeruginosa in Argentina. J Antimicrob Chemother 67:1291–1293. doi:10.1093/jac/dks032. PubMed DOI
Viedma E, Juan C, Acosta J Zamorano L, Otero JR, Sanz F, Chaves F, Oliver A. 2009. Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum beta-lactamases GES-1 and GES-5 in Spain. Antimicrob Agents Chemother 53:4930–4933. doi:10.1128/AAC.00900-09. PubMed DOI PMC
Sevillano E, Gallego L, Garcia-Lobo JM. 2009. First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathol Biol (Paris) 57:493–495. doi:10.1016/j.patbio.2008.05.002. PubMed DOI
Cornaglia G, Giamarellou H, Rossolini GM. 2011. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis 11:381–393. doi:10.1016/S1473-3099(11)70056-1. PubMed DOI
Oliver A, Mulet X, López-Causapé C, Juan C. 2015. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 21-22: 41–59. PubMed
Bebrone C. 2007. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 74:1686–1701. doi:10.1016/j.bcp.2007.05.021. PubMed DOI
Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. 2012. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 25:682–707. doi:10.1128/CMR.05035-11. PubMed DOI PMC
Klockgether J, Reva O, Larbig K, Tummler B. 2004. Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J Bacteriol 186:518–534. doi:10.1128/JB.186.2.518-534.2004. PubMed DOI PMC
Martinez E, Marquez C, Ingold A, Merlino J, Djordjevic SP, Stokes HW, Chowdhury PR. 2012. Diverse mobilized class 1 integrons are common in the chromosomes of pathogenic Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 56:2169–2172. doi:10.1128/AAC.06048-11. PubMed DOI PMC
Levings RS, Lightfoot D, Partridge SR, Hall RM, Djordjevic SP.. 2005. The genomic island SGI1, containing the multiple antibiotic resistance region of Salmonella enterica serovar Typhimurium DT104 or variants of it, is widely distributed in other S. enterica serovars. J Bacteriol 187:4401–4409. doi:10.1128/JB.187.13.4401-4409.2005. PubMed DOI PMC
Perez F, Hujer AM, Marshall SH, Ray AJ, Rather PN, Suwantarat N, Dumford D III, O'Shea P, Domitrovic TN, Salata RA, Chavda KD, Chen L, Kreiswirth BN, Vila AJ, Haussler S, Jacobs MR, Bonomo RA. 2014. Extensively drug-resistant Pseudomonas aeruginosa isolates containing blaVIM-2 and elements of Salmonella genomic island 2: a new genetic resistance determinant in northeast Ohio. Antimicrob Agents Chemother 58:5929–5935. doi:10.1128/AAC.02372-14. PubMed DOI PMC
Kos VN, Déraspe M, McLaughlin RE, Whiteaker JD, Roy PH, Alm RA, Corbeil J, Gardner H. 2015. The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility. Antimicrob Agents Chemother 59:427–436. doi:10.1128/AAC.03954-14. PubMed DOI PMC
Woodford N, Turton JF, Livermore DM. 2011. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35:736–755. doi:10.1111/j.1574-6976.2011.00268.x. PubMed DOI
Edelstein MV, Skleenova EN, Shevchenko OV, D'Souza JW, Tapalski DV, Azizov IS, Sukhorukova MV, Pavlukov RA, Kozlov RS, Toleman MA, Walsh TR. 2013. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect Dis 13:1–10. doi:10.1016/S1473-3099(12)70327-4. PubMed DOI
Hrabak J, Fridrichov M, Stolbova M, Bergerova T, Zemlickova H, Urbaskova P. 2009. First identification of metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Czech Republic. Euro Surveill 14:19102. PubMed
Hrabak J, Cervena D, Izdebski R, Duljasz W, Gniadkowski M, Fridrichova M, Urbaskova P, Zemlickova H. 2011. Regional spread of Pseudomonas aeruginosa ST357 producing IMP-7 metallo-β-lactamase in central Europe. J Clin Microbiol 49:474–475. doi:10.1128/JCM.00684-10. PubMed DOI PMC
Kouda S, Ohara M, Onodera M, Fujiue Y, Sasaki M, Kohara T, Kashiyama S, Hayashida S, Harino T, Tsuji T, Itaha H, Gotoh N, Matsubara A, Usui T, Sugai M. 2009. Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J Antimicrob Chemother 64:46–51. doi:10.1093/jac/dkp142. PubMed DOI
Papagiannitsis CC, Studentova V, Ruzicka F, Tejkalova R, Hrabak J. 2013. Molecular characterization of metallo-β-lactamase-producing Pseudomonas aeruginosa in a Czech hospital (2009–2011). J Med Microbiol 62:945–947. doi:10.1099/jmm.0.056119-0. PubMed DOI
Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, Nordmann P. 2000. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 44:891–897. doi:10.1128/AAC.44.4.891-897.2000. PubMed DOI PMC
Rotova V, Papagiannitsis CC, Skalova A, Chudejova K, Hrabak J. 2017. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J Microbiol Methods 137:30–33. doi:10.1016/j.mimet.2017.04.003. PubMed DOI
Lee K, Lim YS, Yong D, Yum JH, Chong Y. 2003. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-b-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 41:4623–4629. doi:10.1128/JCM.41.10.4623-4629.2003. PubMed DOI PMC
Doi Y, Potoski BA, Adams-Haduch JM, Sidjabat HE, Pasculle AW, Paterson DL. 2008. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J Clin Microbiol 46:4083–4086. doi:10.1128/JCM.01408-08. PubMed DOI PMC
Nemec A, Krizova L, Maixnerova M, Musilek M. 2010. Multidrug-resistant epidemic clones among bloodstream isolates of Pseudomonas aeruginosa in the Czech Republic. Res Microbiol 161:234–242. doi:10.1016/j.resmic.2010.02.002. PubMed DOI
Feltman H, Schulert G, Khan S, Jain SM, Peterson L, Hauser AR. 2001. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 147:2659–2669. doi:10.1099/00221287-147-10-2659. PubMed DOI
Finck-Barbancon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SMJ, Wu C, Mende-Mueller L, Frank DW. 1997. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25:547–557. doi:10.1046/j.1365-2958.1997.4891851.x. PubMed DOI
Roy-Burman A, Savel RH, Racine S, Swanson SBL, Revadigar NS, Fujimoto J, Sawa T, Frank TDW, Wiener-Kronish JP. 2001. Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183:1767–1774. doi:10.1086/320737. PubMed DOI
Ellington MJ, Kistler J, Livermore DM, Woodford N. 2007. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 59:321–322. doi:10.1093/jac/dkl481. PubMed DOI
Poirel L, Lambert T, Türkoglü S, Ronco E, Gaillard J, Nordmann P. 2001. Characterization of class 1 integrons from Pseudomonas aeruginosa that contain the blaVIM-2 carbapenem-hydrolyzing beta-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob Agents Chemother 45:546–552. doi:10.1128/AAC.45.2.546-552.2001. PubMed DOI PMC
Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock RE, Brinkman FS, Levesque RC. 2009. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res 19:12–23. doi:10.1101/gr.086082.108. PubMed DOI PMC
Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S, Ren Q, Dodson R, Harkins D, Shay R, Watkins K, Mahamoud Y, Paulsen IT. 2010. Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 5:e8842. doi:10.1371/journal.pone.0008842. PubMed DOI PMC
Kholodii G, Mindlin S, Petrova M, Minakhina S. 2003. Tn5060 from the Siberian permafrost is most closely related to the ancestor of Tn21 prior to integron acquisition. FEMS Microbiol Lett 226:251–255. doi:10.1016/S0378-1097(03)00559-7. PubMed DOI
Yano H, Genka H, Ohtsubo Y, Nagata Y, Top EM, Tsuda M. 2013. Cointegrate-resolution of toluene-catabolic transposon Tn4651: determination of crossover site and the segment required for full resolution activity. Plasmid 69:24–35. doi:10.1016/j.plasmid.2012.07.004. PubMed DOI
van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras JB, Barbu EM, Shortridge D, Blanc B, Hannum G, Zambardi G, Miller K, Enright MC, Mugnier N, Brami D, Schicklin S, Felderman M, Schwartz AS, Richardson TH, Peterson TC, Hubby B, Cady KC. 2015. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. mBio 6:e01796-15. doi:10.1128/mBio.01796-15. PubMed DOI PMC
Hayden HS, Gillett W, Saenphimmachak C, Lim R, Zhou Y, Jacobs MA, Chang J, Rohmer L, D'Argenio DA, Palmieri A, Levy R, Haugen E, Wong GKS, Brittnacher MJ, Burns JL, Miller SI, Olson MV, Kaul R. 2008. Large-insert genome analysis technology detects structural variation in Pseudomonas aeruginosa clinical strains from cystic fibrosis patients. Genomics 91:530–537. doi:10.1016/j.ygeno.2008.02.005. PubMed DOI PMC
Stokes HW, Elbourne LD, Hall RM. 2007. Tn1403, a multiple-antibiotic resistance transposon made up of three distinct transposons. Antimicrob Agents Chemother 51:1827–1829. doi:10.1128/AAC.01279-06. PubMed DOI PMC
Szuplewska M, Ludwiczak M, Lyzwa K, Czarnecki J, Bartosik D. 2014. Mobility and generation of mosaic non-autonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs). PLoS One 9:e105010. doi:10.1371/journal.pone.0105010. PubMed DOI PMC
Couture F, Lachapelle J, Levesque RC. 1992. Phylogeny of LCR-1 and OXA-5 with class A and class D beta-lactamases. Mol Microbiol 6:1693–1705. doi:10.1111/j.1365-2958.1992.tb00894.x. PubMed DOI
Jalal S, Wretlind B. 1998. Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa. Microb Drug Resist 4:257–261. doi:10.1089/mdr.1998.4.257. PubMed DOI
Walsh F, Amyes SG. 2007. Carbapenem resistance in clinical isolates of Pseudomonas aeruginosa. J Chemother 19:376–381. doi:10.1179/joc.2007.19.4.376. PubMed DOI
Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. 2008. Genetic structure at the origin of acquisition of the beta-lactamase blaKPC gene. Antimicrob Agents Chemother 52:1257–1263. doi:10.1128/AAC.01451-07. PubMed DOI PMC
Kotsakis SD, Papagiannitsis CC, Tzelepi E, Legakis NJ, Miriagou V, Tzouvelekis LS. 2010. GES-13, a β-lactamase variant possessing Lys-104 and Asn-170 in Pseudomonas aeruginosa. Antimicrob Agents Chemother 54:1331–1333. doi:10.1128/AAC.01561-09. PubMed DOI PMC
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. 2009. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054. doi:10.1128/AAC.00774-09. PubMed DOI PMC
Poirel L, Heritier C, Tolun V, Nordmann P. 2004. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:15–22. doi:10.1128/AAC.48.1.15-22.2004. PubMed DOI PMC
European Committee on Antimicrobial Susceptibility Testing. 2003. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9:1–7. doi:10.1046/j.1469-0691.2003.00790.x. PubMed DOI
Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. 2004. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 42:5644–5649. doi:10.1128/JCM.42.12.5644-5649.2004. PubMed DOI PMC
Galán JE, Collmer A. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328. doi:10.1126/science.284.5418.1322. PubMed DOI
Ajayi T, Allmond LR, Sawa T, Wiener-Kronish JP. 2003. Single-nucleotide-polymorphism mapping of the Pseudomonas aeruginosa type III secretion toxins for development of a diagnostic multiplex PCR system. J Clin Microbiol 41:3526–3531. doi:10.1128/JCM.41.8.3526-3531.2003. PubMed DOI PMC
Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A. 2009. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 25:1096–1098. doi:10.1093/bioinformatics/btp105. PubMed DOI
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comp Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC
Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. doi:10.1371/journal.pone.0011147. PubMed DOI PMC
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi:10.1093/jac/dks261. PubMed DOI PMC
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol 5:R12. doi:10.1186/gb-2004-5-2-r12. PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC
Ronquist F, Huelsenbeck JP. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180. PubMed DOI
Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245. doi:10.1093/nar/gkw290. PubMed DOI PMC