• This record comes from PubMed

MDSCs in infectious diseases: regulation, roles, and readjustment

. 2019 Apr ; 68 (4) : 673-685. [epub] 20181219

Language English Country Germany Media print-electronic

Document type Journal Article, Review

Grant support
COST Action BM1404 Mye-EUNITER (www.mye-euniter.eu) COST (European Cooperation in Science and Technology)

Links

PubMed 30569204
PubMed Central PMC11028159
DOI 10.1007/s00262-018-2277-y
PII: 10.1007/s00262-018-2277-y
Knihovny.cz E-resources

Many pathogens, ranging from viruses to multicellular parasites, promote expansion of MDSCs, which are myeloid cells that exhibit immunosuppressive features. The roles of MDSCs in infection depend on the class and virulence mechanisms of the pathogen, the stage of the disease, and the pathology associated with the infection. This work compiles evidence supported by functional assays on the roles of different subsets of MDSCs in acute and chronic infections, including pathogen-associated malignancies, and discusses strategies to modulate MDSC dynamics to benefit the host.

Department of Dermatology University Hospital Münster Münster Germany

Department of Immunology Max Planck Institute for Infection Biology Berlin Germany

Faculty of Mathematics and Natural Sciences University of Greifswald Greifswald Germany

i3S Instituto de Investigação e Inovação em Saúde Porto Portugal

IBMC Instituto de Biologia Molecular e Celular Universidade do Porto Porto Portugal

Immunology of Viral Infections and Autoimmune Diseases IDMIT Department CEA Université Paris Sud 11 INSERM U1184 IBJF Fontenay aux Roses France

Institut Pasteur HIV Inflammation and Persistence Unit Paris France

Institute of Biomedicine of the University of Barcelona Barcelona Spain

Institute of Immunology Friedrich Loeffler Institut Federal Research Institute for Animal Health Südufer 10 17493 Greifswald Insel Riems Germany

Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic

Institute of Virology University Hospital Essen University of Duisburg Essen Essen Germany

Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal

Laboratory of Microbiology Parasitology and Hygiene Faculty of Pharmaceutical Biomedical and Veterinary Sciences University of Antwerp Antwerp Belgium

Molecular and Translational Cardiology Department of Cardiovascular Medicine University Hospital Münster Münster Germany

Nuclear Receptor Group Department of Cell Biology Physiology and Immunology School of Biology University of Barcelona Av Diagonal 643 3rd floor 08028 Barcelona Spain

University Children's Hospital and Interdisciplinary Center for Infectious Diseases University of Tübingen Tübingen Germany

Viral Immunobiology Institute of Experimental Immunology University of Zürich Zurich Switzerland

See more in PubMed

Bronte V, Brandau S, Chen S-H, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150. doi: 10.1038/ncomms12150. PubMed DOI PMC

Bruger AM, Dorhoi A, Esendagli G, et al. How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunol Immunother. 2018 doi: 10.1007/s00262-018-2170-8. PubMed DOI PMC

Skabytska Y, Wölbing F, Günther C, et al. Cutaneous innate immune sensing of toll-like receptor 2–6 ligands suppresses T cell immunity by inducing myeloid-derived suppressor cells. Immunity. 2014;41:762–775. doi: 10.1016/j.immuni.2014.10.009. PubMed DOI

Arora M, Poe SL, Oriss TB, et al. TLR4/MyD88-induced CD11b+ Gr-1 int F4/80+ non-migratory myeloid cells suppress Th2 effector function in the lung. Mucosal Immunol. 2010;3:578–593. doi: 10.1038/mi.2010.41. PubMed DOI PMC

Rieber N, Brand A, Hector A, et al. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol. 2013;190:1276–1284. doi: 10.4049/jimmunol.1202144. PubMed DOI

Ren JP, Zhao J, Dai J, et al. Hepatitis C virus-induced myeloid-derived suppressor cells regulate T-cell differentiation and function via the signal transducer and activator of transcription 3 pathway. Immunology. 2016;148:377–386. doi: 10.1111/imm.12616. PubMed DOI PMC

Zhai N, Li H, Song H, et al. Hepatitis C virus induces MDSCs-like monocytes through TLR2/PI3K/AKT/STAT3 signaling. PLoS One. 2017;12:e0170516. doi: 10.1371/journal.pone.0170516. PubMed DOI PMC

Tacke RS, Lee H-C, Goh C, et al. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology. 2012;55:343–353. doi: 10.1002/hep.24700. PubMed DOI PMC

Goh CC, Roggerson KM, Lee H-C, et al. Hepatitis C virus-induced myeloid-derived suppressor cells suppress NK cell IFN-γ production by altering cellular metabolism via arginase-1. J Immunol. 2016;196:2283–2292. doi: 10.4049/jimmunol.1501881. PubMed DOI PMC

Fang Z, Li J, Yu X, et al. Polarization of monocytic myeloid-derived suppressor cells by hepatitis B surface antigen is mediated via ERK/IL-6/STAT3 signaling feedback and restrains the activation of T cells in chronic hepatitis B virus infection. J Immunol. 2015;195:4873–4883. doi: 10.4049/jimmunol.1501362. PubMed DOI

Garg A, Spector SA. HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity. J Infect Dis. 2014;209:441–451. doi: 10.1093/infdis/jit469. PubMed DOI PMC

Dorhoi A, Du Plessis N. Monocytic myeloid-derived suppressor cells in chronic infections. Front Immunol. 2018;8:1895. doi: 10.3389/fimmu.2017.01895. PubMed DOI PMC

De Santo C, Salio M, Masri SH, et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest. 2008;118:4036–4048. doi: 10.1172/JCI36264. PubMed DOI PMC

Jeisy-Scott V, Davis WG, Patel JR, et al. Increased MDSC accumulation and Th2 biased response to influenza A virus infection in the absence of TLR7 in mice. PLoS One. 2011;6:e25242. doi: 10.1371/journal.pone.0025242. PubMed DOI PMC

Rieber N, Singh A, Öz H, et al. Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells. Cell Host Microbe. 2015;17:507–514. doi: 10.1016/j.chom.2015.02.007. PubMed DOI PMC

Albeituni SH, Ding C, Liu M, et al. Yeast-derived particulate β-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J Immunol. 2016;196:2167–2180. doi: 10.4049/jimmunol.1501853. PubMed DOI PMC

Gomez-Garcia L, Lopez-Marin LM, Saavedra R, et al. Intact glycans from cestode antigens are involved in innate activation of myeloid suppressor cells. Parasite Immunol. 2005;27:395–405. doi: 10.1111/j.1365-3024.2005.00790.x. PubMed DOI

Terrazas LI, Walsh KL, Piskorska D, et al. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: a potential mechanism for immune polarization in helminth infections. J Immunol. 2001;167:5294–5303. doi: 10.4049/jimmunol.167.9.5294. PubMed DOI

Atochina O, Daly-Engel T, Piskorska D, et al. A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1(+) macrophages that suppress naive CD4(+) T cell proliferation via an IFN-gamma and nitric oxide-dependent mechanism. J Immunol. 2001;167:4293–4302. doi: 10.4049/jimmunol.167.8.4293. PubMed DOI

Wagner A, Schabussova I, Drinic M, et al. Oocyst-derived extract of Toxoplasma gondii serves as potent immunomodulator in a mouse model of birch pollen allergy. PLoS One. 2016;11:e0155081. doi: 10.1371/journal.pone.0155081. PubMed DOI PMC

Ost M, Singh A, Peschel A, et al. Myeloid-derived suppressor cells in bacterial infections. Front Cell Infect Microbiol. 2016;6:37. doi: 10.3389/fcimb.2016.00037. PubMed DOI PMC

Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–174. doi: 10.1038/nri2506. PubMed DOI PMC

Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19:108–119. doi: 10.1038/s41590-017-0022-x. PubMed DOI PMC

Arocena AR, Onofrio LI, Pellegrini AV, et al. Myeloid-derived suppressor cells are key players in the resolution of inflammation during a model of acute infection. Eur J Immunol. 2014;44:184–194. doi: 10.1002/eji.201343606. PubMed DOI

Sander LE, Sackett SD, Dierssen U, et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J Exp Med. 2010;207:1453–1464. doi: 10.1084/jem.20091474. PubMed DOI PMC

Ribechini E, Hutchinson JA, Hergovits S, et al. Novel GM-CSF signals via IFN-γR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Adv. 2017;1:947–960. doi: 10.1182/bloodadvances.2017006858. PubMed DOI PMC

Haverkamp JM, Smith AM, Weinlich R, et al. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways. Immunity. 2014;41:947–959. doi: 10.1016/j.immuni.2014.10.020. PubMed DOI PMC

Wang C, Zhang N, Qi L, et al. Myeloid-derived suppressor cells inhibit T follicular helper cell immune response in japanese encephalitis virus infection. J Immunol. 2017;199:3094–3105. doi: 10.4049/jimmunol.1700671. PubMed DOI

Drabczyk-Pluta M, Werner T, Hoffmann D, et al. Granulocytic myeloid-derived suppressor cells suppress virus-specific CD8+ T cell responses during acute friend retrovirus infection. Retrovirology. 2017;14:42. doi: 10.1186/s12977-017-0364-3. PubMed DOI PMC

Voisin M-B, Buzoni-Gatel D, Bout D, Velge-Roussel F. Both expansion of regulatory GR1+ CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect Immun. 2004;72:5487–5492. doi: 10.1128/IAI.72.9.5487-5492.2004. PubMed DOI PMC

Darcy CJ, Minigo G, Piera KA, et al. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Crit Care. 2014;18:R163. doi: 10.1186/cc14003. PubMed DOI PMC

Janols H, Bergenfelz C, Allaoui R, et al. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in Gram-positive cases. J Leukoc Biol. 2014;96:685–693. doi: 10.1189/jlb.5HI0214-074R. PubMed DOI

Uhel F, Azzaoui I, Grégoire M, et al. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am J Respir Crit Care Med. 2017;196:315–327. doi: 10.1164/rccm.201606-1143OC. PubMed DOI

Delano MJ, Scumpia PO, Weinstein JS, et al. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 2007;204:1463–1474. doi: 10.1084/jem.20062602. PubMed DOI PMC

Poe SL, Arora M, Oriss TB, et al. STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia. Mucosal Immunol. 2013;6:189–199. doi: 10.1038/mi.2012.62. PubMed DOI PMC

Cuervo H, Guerrero NA, Carbajosa S, et al. Myeloid-derived suppressor cells infiltrate the heart in acute Trypanosoma cruzi infection. J Immunol. 2011;187:2656–2665. doi: 10.4049/jimmunol.1002928. PubMed DOI

Sanmarco LM, Visconti LM, Eberhardt N, et al. IL-6 improves the nitric oxide-induced cytotoxic CD8+ T cell dysfunction in human chagas disease. Front Immunol. 2016;7:626. doi: 10.3389/fimmu.2016.00626. PubMed DOI PMC

Nathan C, Ding A. Nonresolving Inflammation. Cell. 2010;140:871–882. doi: 10.1016/j.cell.2010.02.029. PubMed DOI

White MK, Pagano JS, Khalili K. Viruses and human cancers: a long road of discovery of molecular paradigms. Clin Microbiol Rev. 2014;27:463–481. doi: 10.1128/CMR.00124-13. PubMed DOI PMC

Chang AH, Parsonnet J. Role of bacteria in oncogenesis. Clin Microbiol Rev. 2010;23:837–857. doi: 10.1128/CMR.00012-10. PubMed DOI PMC

van Tong H, Brindley PJ, Meyer CG, Velavan TP. Parasite infection, carcinogenesis and human malignancy. EBioMedicine. 2017;15:12–23. doi: 10.1016/j.ebiom.2016.11.034. PubMed DOI PMC

Yang B, Wang X, Jiang J, et al. Identification of CD244-expressing myeloid-derived suppressor cells in patients with active tuberculosis. Immunol Lett. 2014;158:66–72. doi: 10.1016/j.imlet.2013.12.003. PubMed DOI

du Plessis N, Loebenberg L, Kriel M, et al. Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent Mycobacterium tuberculosis infection suppresses T-cell function. Am J Respir Crit Care Med. 2013;188:724–732. doi: 10.1164/rccm.201302-0249OC. PubMed DOI

El Daker S, Sacchi A, Tempestilli M, et al. Granulocytic myeloid derived suppressor cells expansion during active pulmonary tuberculosis is associated with high nitric oxide plasma level. PLoS One. 2015;10:e0123772. doi: 10.1371/journal.pone.0123772. PubMed DOI PMC

Knaul JK, Jörg S, Oberbeck-Mueller D, et al. Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am J Respir Crit Care Med. 2014;190:1053–1066. doi: 10.1164/rccm.201405-0828OC. PubMed DOI

Tsiganov EN, Verbina EM, Radaeva TV, et al. Gr-1dimCD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J Immunol. 2014;192:4718–4727. doi: 10.4049/jimmunol.1301365. PubMed DOI PMC

Gupta S, Cheung L, Pokkali S, et al. Suppressor cell-depleting immunotherapy with denileukin diftitox is an effective host-directed therapy for tuberculosis. J Infect Dis. 2017;215:1883–1887. doi: 10.1093/infdis/jix208. PubMed DOI PMC

Heim CE, Vidlak D, Scherr TD, et al. Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol. 2014;192:3778–3792. doi: 10.4049/jimmunol.1303408. PubMed DOI PMC

Ding L, Hayes MM, Photenhauer A, et al. Schlafen 4–expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia. J Clin Invest. 2016;126:2867–2880. doi: 10.1172/JCI82529. PubMed DOI PMC

Thiele Orberg E, Fan H, Tam AJ, et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 2017;10:421–433. doi: 10.1038/mi.2016.53. PubMed DOI PMC

Norris BA, Uebelhoer LS, Nakaya HI, et al. Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity. Immunity. 2013;38:309–321. doi: 10.1016/j.immuni.2012.10.022. PubMed DOI PMC

Green KA, Cook WJ, Green WR. Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency. J Virol. 2013;87:2058–2071. doi: 10.1128/JVI.01547-12. PubMed DOI PMC

Alaoui L, Palomino G, Zurawski S et al (2017) Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs. Cell Mol Life Sci 1–17. 10.1007/s00018-017-2712-9 PubMed PMC

Huot N, Rascle P, Garcia-Tellez T, et al. Innate immune cell responses in non pathogenic versus pathogenic SIV infections. Curr Opin Virol. 2016;19:37–44. doi: 10.1016/j.coviro.2016.06.011. PubMed DOI

Zhang Z-N, Yi N, Zhang T-W, et al. Myeloid-derived suppressor cells associated with disease progression in primary HIV infection. JAIDS J Acquir Immune Defic Syndr. 2017;76:200–208. doi: 10.1097/QAI.0000000000001471. PubMed DOI

Vollbrecht T, Stirner R, Tufman A, et al. Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS. 2012;26:F31–F37. doi: 10.1097/QAD.0b013e328354b43f. PubMed DOI

Tumino N, Turchi F, Meschi S, et al. In HIV-positive patients, myeloid-derived suppressor cells induce T-cell anergy by suppressing CD3 ζ expression through ELF-1 inhibition. AIDS. 2015;29:2397–2407. doi: 10.1097/QAD.0000000000000871. PubMed DOI

Qin A, Cai W, Pan T, et al. Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol. 2013;87:1477–1490. doi: 10.1128/JVI.01759-12. PubMed DOI PMC

Gama L, Shirk EN, Russell JN, et al. Expansion of a subset of CD14highCD16negCCR2low/neg monocytes functionally similar to myeloid-derived suppressor cells during SIV and HIV infection. J Leukoc Biol. 2012;91:803–816. doi: 10.1189/jlb.1111579. PubMed DOI PMC

Dross SE, Munson PV, Kim SE, et al. Kinetics of myeloid-derived suppressor cell frequency and function during simian immunodeficiency virus infection, combination antiretroviral therapy, and treatment interruption. J Immunol. 2017;198:757–766. doi: 10.4049/jimmunol.1600759. PubMed DOI PMC

Cai W, Qin A, Guo P, et al. Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients. J Clin Immunol. 2013;33:798–808. doi: 10.1007/s10875-012-9861-2. PubMed DOI

Zeng Q-L, Yang B, Sun H-Q, et al. Myeloid-derived suppressor cells are associated with viral persistence and downregulation of TCR ζ chain expression on CD8(+) T cells in chronic hepatitis C patients. Mol Cells. 2014;37:66–73. doi: 10.14348/molcells.2014.2282. PubMed DOI PMC

Nonnenmann J, Stirner R, Roider J, et al. Lack of significant elevation of myeloid-derived suppressor cells in peripheral blood of chronically hepatitis C virus-infected individuals. J Virol. 2014;88:7678–7682. doi: 10.1128/JVI.00113-14. PubMed DOI PMC

Huang A, Zhang B, Yan W, et al. Myeloid-derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-induced IL-10. J Immunol. 2014;193:5461–5469. doi: 10.4049/jimmunol.1400849. PubMed DOI

Chen S, Akbar SMF, Abe M, et al. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol. 2011;166:134–142. doi: 10.1111/j.1365-2249.2011.04445.x. PubMed DOI PMC

Kong X, Sun R, Chen Y, et al. γδT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol. 2014;193:1645–1653. doi: 10.4049/jimmunol.1303432. PubMed DOI

Pallett LJ, Gill US, Quaglia A, et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat Med. 2015;21:591–600. doi: 10.1038/nm.3856. PubMed DOI PMC

Cesarman E. Gammaherpesviruses and lymphoproliferative disorders. Annu Rev Pathol Mech Dis. 2014;9:349–372. doi: 10.1146/annurev-pathol-012513-104656. PubMed DOI

Romano A, Parrinello NL, Vetro C, et al. Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin Lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol. 2015;168:689–700. doi: 10.1111/bjh.13198. PubMed DOI

Zhang H, Li Z-L, Ye S-B, et al. Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunol Immunother. 2015;64:1587–1599. doi: 10.1007/s00262-015-1765-6. PubMed DOI PMC

Cai T-T, Ye S-B, Liu Y-N, et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLOS Pathog. 2017;13:e1006503. doi: 10.1371/journal.ppat.1006503. PubMed DOI PMC

Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol. 2016;138:666–675. doi: 10.1016/j.jaci.2016.07.007. PubMed DOI PMC

Yang Q, Qiu H, Xie H, et al. A Schistosoma japonicum infection promotes the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. J Immunol. 2017;198:4716–4727. doi: 10.4049/jimmunol.1601860. PubMed DOI

Valanparambil RM, Tam M, Jardim A, et al. Primary Heligmosomoides polygyrus bakeri infection induces myeloid-derived suppressor cells that suppress CD4+ Th2 responses and promote chronic infection. Mucosal Immunol. 2017;10:238–249. doi: 10.1038/mi.2016.36. PubMed DOI

Van Ginderachter JA, Beschin A, De Baetselier P, Raes G. Myeloid-derived suppressor cells in parasitic infections. Eur J Immunol. 2010;40:2976–2985. doi: 10.1002/eji.201040911. PubMed DOI

Brys L, Beschin A, Raes G, et al. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol. 2005;174:6095–6104. doi: 10.4049/jimmunol.174.10.6095. PubMed DOI

Pereira WF, Ribeiro-Gomes FL, Guillermo LVC, et al. Myeloid-derived suppressor cells help protective immunity to Leishmania major infection despite suppressed T cell responses. J Leukoc Biol. 2011;90:1191–1197. doi: 10.1189/jlb.1110608. PubMed DOI

Schmid M, Zimara N, Wege AK, Ritter U. Myeloid-derived suppressor cell functionality and interaction with Leishmania major parasites differ in C57BL/6 and BALB/c mice. Eur J Immunol. 2014;44:3295–3306. doi: 10.1002/eji.201344335. PubMed DOI

Singh A, Lelis F, Braig S, et al. Differential regulation of myeloid-derived suppressor cells by Candida species. Front Microbiol. 2016;7:1624. doi: 10.3389/fmicb.2016.01624. PubMed DOI PMC

Zhang C, Lei G-S, Shao S, et al. Accumulation of myeloid-derived suppressor cells in the lungs during Pneumocystis pneumonia. Infect Immun. 2012;80:3634–3641. doi: 10.1128/IAI.00668-12. PubMed DOI PMC

Lei G-S, Zhang C, Shao S, et al. All-trans retinoic acid in combination with primaquine clears pneumocystis infection. PLoS One. 2013;8:e53479. doi: 10.1371/journal.pone.0053479. PubMed DOI PMC

Lei G-S, Zhang C, Lee C-H. Myeloid-derived suppressor cells impair alveolar macrophages through PD-1 receptor ligation during Pneumocystis pneumonia. Infect Immun. 2015;83:572–582. doi: 10.1128/IAI.02686-14. PubMed DOI PMC

Sui Y, Frey B, Wang Y, et al. Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathog. 2017;13:e1006395. doi: 10.1371/journal.ppat.1006395. PubMed DOI PMC

Keller C, Hoffmann R, Lang R, et al. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun. 2006;74:4295–4309. doi: 10.1128/IAI.00057-06. PubMed DOI PMC

Eruslanov EB, Lyadova IV, Kondratieva TK, et al. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun. 2005;73:1744–1753. doi: 10.1128/IAI.73.3.1744-1753.2005. PubMed DOI PMC

Tebartz C, Horst SA, Sparwasser T, et al. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection. J Immunol. 2015;194:1100–1111. doi: 10.4049/jimmunol.1400196. PubMed DOI

Mourik BC, Leenen PJM, de Knegt GJ, et al. Immunotherapy added to antibiotic treatment reduces relapse of disease in a mouse model of tuberculosis. Am J Respir Cell Mol Biol. 2017;56:233–241. doi: 10.1165/rcmb.2016-0185OC. PubMed DOI

Chandra D, Quispe-Tintaya W, Jahangir A, et al. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol Res. 2014;2:901–910. doi: 10.1158/2326-6066.CIR-13-0123. PubMed DOI PMC

Liu F, Li X, Lu C, et al. Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget. 2016;7:83907–83925. doi: 10.18632/oncotarget.13438. PubMed DOI PMC

Tavazoie MF, Pollack I, Tanqueco R, et al. LXR/ApoE activation restricts innate immune suppression in cancer. Cell. 2018;172:825–840.e18. doi: 10.1016/j.cell.2017.12.026. PubMed DOI PMC

Ahidjo BA, Bishai WR. Phosphodiesterase inhibitors as adjunctive therapies for tuberculosis. EBioMedicine. 2016;4:7–8. doi: 10.1016/j.ebiom.2016.02.016. PubMed DOI PMC

Obregón-Henao A, Henao-Tamayo M, Orme IM, Ordway DJ. Gr1(int)CD11b+ myeloid-derived suppressor cells in Mycobacterium tuberculosis infection. PLoS One. 2013;8:e80669. doi: 10.1371/journal.pone.0080669. PubMed DOI PMC

Vilaplana C, Marzo E, Tapia G, et al. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis. 2013;208:199–202. doi: 10.1093/infdis/jit152. PubMed DOI

Zhang S, Wu K, Liu Y, et al. Finasteride Enhances the generation of human myeloid-derived suppressor cells by up-regulating the COX2/PGE2 pathway. PLoS One. 2016;11:e0156549. doi: 10.1371/journal.pone.0156549. PubMed DOI PMC

Rieber N, Gille C, Köstlin N, et al. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin Exp Immunol. 2013;174:45–52. doi: 10.1111/cei.12143. PubMed DOI PMC

Flores RR, Clauson CL, Cho J, et al. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism. Aging Cell. 2017;16:480–487. doi: 10.1111/acel.12571. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...