MDSCs in infectious diseases: regulation, roles, and readjustment
Language English Country Germany Media print-electronic
Document type Journal Article, Review
Grant support
COST Action BM1404 Mye-EUNITER (www.mye-euniter.eu)
COST (European Cooperation in Science and Technology)
PubMed
30569204
PubMed Central
PMC11028159
DOI
10.1007/s00262-018-2277-y
PII: 10.1007/s00262-018-2277-y
Knihovny.cz E-resources
- Keywords
- Immunosuppression, Infection, MDSC, Mye-EUNITER, Myeloid regulatory cells, Oncogenic viruses,
- MeSH
- Acute Disease MeSH
- Biomarkers MeSH
- Chronic Disease MeSH
- Molecular Targeted Therapy MeSH
- Immunomodulation MeSH
- Communicable Diseases drug therapy etiology metabolism MeSH
- Host-Pathogen Interactions immunology MeSH
- Humans MeSH
- Myeloid-Derived Suppressor Cells drug effects immunology metabolism MeSH
- Disease Susceptibility MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Biomarkers MeSH
Many pathogens, ranging from viruses to multicellular parasites, promote expansion of MDSCs, which are myeloid cells that exhibit immunosuppressive features. The roles of MDSCs in infection depend on the class and virulence mechanisms of the pathogen, the stage of the disease, and the pathology associated with the infection. This work compiles evidence supported by functional assays on the roles of different subsets of MDSCs in acute and chronic infections, including pathogen-associated malignancies, and discusses strategies to modulate MDSC dynamics to benefit the host.
Department of Dermatology University Hospital Münster Münster Germany
Department of Immunology Max Planck Institute for Infection Biology Berlin Germany
Faculty of Mathematics and Natural Sciences University of Greifswald Greifswald Germany
i3S Instituto de Investigação e Inovação em Saúde Porto Portugal
IBMC Instituto de Biologia Molecular e Celular Universidade do Porto Porto Portugal
Institut Pasteur HIV Inflammation and Persistence Unit Paris France
Institute of Biomedicine of the University of Barcelona Barcelona Spain
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Institute of Virology University Hospital Essen University of Duisburg Essen Essen Germany
Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
Viral Immunobiology Institute of Experimental Immunology University of Zürich Zurich Switzerland
See more in PubMed
Bronte V, Brandau S, Chen S-H, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150. doi: 10.1038/ncomms12150. PubMed DOI PMC
Bruger AM, Dorhoi A, Esendagli G, et al. How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunol Immunother. 2018 doi: 10.1007/s00262-018-2170-8. PubMed DOI PMC
Skabytska Y, Wölbing F, Günther C, et al. Cutaneous innate immune sensing of toll-like receptor 2–6 ligands suppresses T cell immunity by inducing myeloid-derived suppressor cells. Immunity. 2014;41:762–775. doi: 10.1016/j.immuni.2014.10.009. PubMed DOI
Arora M, Poe SL, Oriss TB, et al. TLR4/MyD88-induced CD11b+ Gr-1 int F4/80+ non-migratory myeloid cells suppress Th2 effector function in the lung. Mucosal Immunol. 2010;3:578–593. doi: 10.1038/mi.2010.41. PubMed DOI PMC
Rieber N, Brand A, Hector A, et al. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol. 2013;190:1276–1284. doi: 10.4049/jimmunol.1202144. PubMed DOI
Ren JP, Zhao J, Dai J, et al. Hepatitis C virus-induced myeloid-derived suppressor cells regulate T-cell differentiation and function via the signal transducer and activator of transcription 3 pathway. Immunology. 2016;148:377–386. doi: 10.1111/imm.12616. PubMed DOI PMC
Zhai N, Li H, Song H, et al. Hepatitis C virus induces MDSCs-like monocytes through TLR2/PI3K/AKT/STAT3 signaling. PLoS One. 2017;12:e0170516. doi: 10.1371/journal.pone.0170516. PubMed DOI PMC
Tacke RS, Lee H-C, Goh C, et al. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology. 2012;55:343–353. doi: 10.1002/hep.24700. PubMed DOI PMC
Goh CC, Roggerson KM, Lee H-C, et al. Hepatitis C virus-induced myeloid-derived suppressor cells suppress NK cell IFN-γ production by altering cellular metabolism via arginase-1. J Immunol. 2016;196:2283–2292. doi: 10.4049/jimmunol.1501881. PubMed DOI PMC
Fang Z, Li J, Yu X, et al. Polarization of monocytic myeloid-derived suppressor cells by hepatitis B surface antigen is mediated via ERK/IL-6/STAT3 signaling feedback and restrains the activation of T cells in chronic hepatitis B virus infection. J Immunol. 2015;195:4873–4883. doi: 10.4049/jimmunol.1501362. PubMed DOI
Garg A, Spector SA. HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity. J Infect Dis. 2014;209:441–451. doi: 10.1093/infdis/jit469. PubMed DOI PMC
Dorhoi A, Du Plessis N. Monocytic myeloid-derived suppressor cells in chronic infections. Front Immunol. 2018;8:1895. doi: 10.3389/fimmu.2017.01895. PubMed DOI PMC
De Santo C, Salio M, Masri SH, et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest. 2008;118:4036–4048. doi: 10.1172/JCI36264. PubMed DOI PMC
Jeisy-Scott V, Davis WG, Patel JR, et al. Increased MDSC accumulation and Th2 biased response to influenza A virus infection in the absence of TLR7 in mice. PLoS One. 2011;6:e25242. doi: 10.1371/journal.pone.0025242. PubMed DOI PMC
Rieber N, Singh A, Öz H, et al. Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells. Cell Host Microbe. 2015;17:507–514. doi: 10.1016/j.chom.2015.02.007. PubMed DOI PMC
Albeituni SH, Ding C, Liu M, et al. Yeast-derived particulate β-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J Immunol. 2016;196:2167–2180. doi: 10.4049/jimmunol.1501853. PubMed DOI PMC
Gomez-Garcia L, Lopez-Marin LM, Saavedra R, et al. Intact glycans from cestode antigens are involved in innate activation of myeloid suppressor cells. Parasite Immunol. 2005;27:395–405. doi: 10.1111/j.1365-3024.2005.00790.x. PubMed DOI
Terrazas LI, Walsh KL, Piskorska D, et al. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1(+) cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4(+) cells: a potential mechanism for immune polarization in helminth infections. J Immunol. 2001;167:5294–5303. doi: 10.4049/jimmunol.167.9.5294. PubMed DOI
Atochina O, Daly-Engel T, Piskorska D, et al. A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1(+) macrophages that suppress naive CD4(+) T cell proliferation via an IFN-gamma and nitric oxide-dependent mechanism. J Immunol. 2001;167:4293–4302. doi: 10.4049/jimmunol.167.8.4293. PubMed DOI
Wagner A, Schabussova I, Drinic M, et al. Oocyst-derived extract of Toxoplasma gondii serves as potent immunomodulator in a mouse model of birch pollen allergy. PLoS One. 2016;11:e0155081. doi: 10.1371/journal.pone.0155081. PubMed DOI PMC
Ost M, Singh A, Peschel A, et al. Myeloid-derived suppressor cells in bacterial infections. Front Cell Infect Microbiol. 2016;6:37. doi: 10.3389/fcimb.2016.00037. PubMed DOI PMC
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–174. doi: 10.1038/nri2506. PubMed DOI PMC
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19:108–119. doi: 10.1038/s41590-017-0022-x. PubMed DOI PMC
Arocena AR, Onofrio LI, Pellegrini AV, et al. Myeloid-derived suppressor cells are key players in the resolution of inflammation during a model of acute infection. Eur J Immunol. 2014;44:184–194. doi: 10.1002/eji.201343606. PubMed DOI
Sander LE, Sackett SD, Dierssen U, et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J Exp Med. 2010;207:1453–1464. doi: 10.1084/jem.20091474. PubMed DOI PMC
Ribechini E, Hutchinson JA, Hergovits S, et al. Novel GM-CSF signals via IFN-γR/IRF-1 and AKT/mTOR license monocytes for suppressor function. Blood Adv. 2017;1:947–960. doi: 10.1182/bloodadvances.2017006858. PubMed DOI PMC
Haverkamp JM, Smith AM, Weinlich R, et al. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways. Immunity. 2014;41:947–959. doi: 10.1016/j.immuni.2014.10.020. PubMed DOI PMC
Wang C, Zhang N, Qi L, et al. Myeloid-derived suppressor cells inhibit T follicular helper cell immune response in japanese encephalitis virus infection. J Immunol. 2017;199:3094–3105. doi: 10.4049/jimmunol.1700671. PubMed DOI
Drabczyk-Pluta M, Werner T, Hoffmann D, et al. Granulocytic myeloid-derived suppressor cells suppress virus-specific CD8+ T cell responses during acute friend retrovirus infection. Retrovirology. 2017;14:42. doi: 10.1186/s12977-017-0364-3. PubMed DOI PMC
Voisin M-B, Buzoni-Gatel D, Bout D, Velge-Roussel F. Both expansion of regulatory GR1+ CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect Immun. 2004;72:5487–5492. doi: 10.1128/IAI.72.9.5487-5492.2004. PubMed DOI PMC
Darcy CJ, Minigo G, Piera KA, et al. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Crit Care. 2014;18:R163. doi: 10.1186/cc14003. PubMed DOI PMC
Janols H, Bergenfelz C, Allaoui R, et al. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in Gram-positive cases. J Leukoc Biol. 2014;96:685–693. doi: 10.1189/jlb.5HI0214-074R. PubMed DOI
Uhel F, Azzaoui I, Grégoire M, et al. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infections in patients with sepsis. Am J Respir Crit Care Med. 2017;196:315–327. doi: 10.1164/rccm.201606-1143OC. PubMed DOI
Delano MJ, Scumpia PO, Weinstein JS, et al. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 2007;204:1463–1474. doi: 10.1084/jem.20062602. PubMed DOI PMC
Poe SL, Arora M, Oriss TB, et al. STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia. Mucosal Immunol. 2013;6:189–199. doi: 10.1038/mi.2012.62. PubMed DOI PMC
Cuervo H, Guerrero NA, Carbajosa S, et al. Myeloid-derived suppressor cells infiltrate the heart in acute Trypanosoma cruzi infection. J Immunol. 2011;187:2656–2665. doi: 10.4049/jimmunol.1002928. PubMed DOI
Sanmarco LM, Visconti LM, Eberhardt N, et al. IL-6 improves the nitric oxide-induced cytotoxic CD8+ T cell dysfunction in human chagas disease. Front Immunol. 2016;7:626. doi: 10.3389/fimmu.2016.00626. PubMed DOI PMC
Nathan C, Ding A. Nonresolving Inflammation. Cell. 2010;140:871–882. doi: 10.1016/j.cell.2010.02.029. PubMed DOI
White MK, Pagano JS, Khalili K. Viruses and human cancers: a long road of discovery of molecular paradigms. Clin Microbiol Rev. 2014;27:463–481. doi: 10.1128/CMR.00124-13. PubMed DOI PMC
Chang AH, Parsonnet J. Role of bacteria in oncogenesis. Clin Microbiol Rev. 2010;23:837–857. doi: 10.1128/CMR.00012-10. PubMed DOI PMC
van Tong H, Brindley PJ, Meyer CG, Velavan TP. Parasite infection, carcinogenesis and human malignancy. EBioMedicine. 2017;15:12–23. doi: 10.1016/j.ebiom.2016.11.034. PubMed DOI PMC
Yang B, Wang X, Jiang J, et al. Identification of CD244-expressing myeloid-derived suppressor cells in patients with active tuberculosis. Immunol Lett. 2014;158:66–72. doi: 10.1016/j.imlet.2013.12.003. PubMed DOI
du Plessis N, Loebenberg L, Kriel M, et al. Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent Mycobacterium tuberculosis infection suppresses T-cell function. Am J Respir Crit Care Med. 2013;188:724–732. doi: 10.1164/rccm.201302-0249OC. PubMed DOI
El Daker S, Sacchi A, Tempestilli M, et al. Granulocytic myeloid derived suppressor cells expansion during active pulmonary tuberculosis is associated with high nitric oxide plasma level. PLoS One. 2015;10:e0123772. doi: 10.1371/journal.pone.0123772. PubMed DOI PMC
Knaul JK, Jörg S, Oberbeck-Mueller D, et al. Lung-residing myeloid-derived suppressors display dual functionality in murine pulmonary tuberculosis. Am J Respir Crit Care Med. 2014;190:1053–1066. doi: 10.1164/rccm.201405-0828OC. PubMed DOI
Tsiganov EN, Verbina EM, Radaeva TV, et al. Gr-1dimCD11b+ immature myeloid-derived suppressor cells but not neutrophils are markers of lethal tuberculosis infection in mice. J Immunol. 2014;192:4718–4727. doi: 10.4049/jimmunol.1301365. PubMed DOI PMC
Gupta S, Cheung L, Pokkali S, et al. Suppressor cell-depleting immunotherapy with denileukin diftitox is an effective host-directed therapy for tuberculosis. J Infect Dis. 2017;215:1883–1887. doi: 10.1093/infdis/jix208. PubMed DOI PMC
Heim CE, Vidlak D, Scherr TD, et al. Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol. 2014;192:3778–3792. doi: 10.4049/jimmunol.1303408. PubMed DOI PMC
Ding L, Hayes MM, Photenhauer A, et al. Schlafen 4–expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia. J Clin Invest. 2016;126:2867–2880. doi: 10.1172/JCI82529. PubMed DOI PMC
Thiele Orberg E, Fan H, Tam AJ, et al. The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 2017;10:421–433. doi: 10.1038/mi.2016.53. PubMed DOI PMC
Norris BA, Uebelhoer LS, Nakaya HI, et al. Chronic but not acute virus infection induces sustained expansion of myeloid suppressor cell numbers that inhibit viral-specific T cell immunity. Immunity. 2013;38:309–321. doi: 10.1016/j.immuni.2012.10.022. PubMed DOI PMC
Green KA, Cook WJ, Green WR. Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency. J Virol. 2013;87:2058–2071. doi: 10.1128/JVI.01547-12. PubMed DOI PMC
Alaoui L, Palomino G, Zurawski S et al (2017) Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs. Cell Mol Life Sci 1–17. 10.1007/s00018-017-2712-9 PubMed PMC
Huot N, Rascle P, Garcia-Tellez T, et al. Innate immune cell responses in non pathogenic versus pathogenic SIV infections. Curr Opin Virol. 2016;19:37–44. doi: 10.1016/j.coviro.2016.06.011. PubMed DOI
Zhang Z-N, Yi N, Zhang T-W, et al. Myeloid-derived suppressor cells associated with disease progression in primary HIV infection. JAIDS J Acquir Immune Defic Syndr. 2017;76:200–208. doi: 10.1097/QAI.0000000000001471. PubMed DOI
Vollbrecht T, Stirner R, Tufman A, et al. Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS. 2012;26:F31–F37. doi: 10.1097/QAD.0b013e328354b43f. PubMed DOI
Tumino N, Turchi F, Meschi S, et al. In HIV-positive patients, myeloid-derived suppressor cells induce T-cell anergy by suppressing CD3 ζ expression through ELF-1 inhibition. AIDS. 2015;29:2397–2407. doi: 10.1097/QAD.0000000000000871. PubMed DOI
Qin A, Cai W, Pan T, et al. Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol. 2013;87:1477–1490. doi: 10.1128/JVI.01759-12. PubMed DOI PMC
Gama L, Shirk EN, Russell JN, et al. Expansion of a subset of CD14highCD16negCCR2low/neg monocytes functionally similar to myeloid-derived suppressor cells during SIV and HIV infection. J Leukoc Biol. 2012;91:803–816. doi: 10.1189/jlb.1111579. PubMed DOI PMC
Dross SE, Munson PV, Kim SE, et al. Kinetics of myeloid-derived suppressor cell frequency and function during simian immunodeficiency virus infection, combination antiretroviral therapy, and treatment interruption. J Immunol. 2017;198:757–766. doi: 10.4049/jimmunol.1600759. PubMed DOI PMC
Cai W, Qin A, Guo P, et al. Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients. J Clin Immunol. 2013;33:798–808. doi: 10.1007/s10875-012-9861-2. PubMed DOI
Zeng Q-L, Yang B, Sun H-Q, et al. Myeloid-derived suppressor cells are associated with viral persistence and downregulation of TCR ζ chain expression on CD8(+) T cells in chronic hepatitis C patients. Mol Cells. 2014;37:66–73. doi: 10.14348/molcells.2014.2282. PubMed DOI PMC
Nonnenmann J, Stirner R, Roider J, et al. Lack of significant elevation of myeloid-derived suppressor cells in peripheral blood of chronically hepatitis C virus-infected individuals. J Virol. 2014;88:7678–7682. doi: 10.1128/JVI.00113-14. PubMed DOI PMC
Huang A, Zhang B, Yan W, et al. Myeloid-derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-induced IL-10. J Immunol. 2014;193:5461–5469. doi: 10.4049/jimmunol.1400849. PubMed DOI
Chen S, Akbar SMF, Abe M, et al. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol. 2011;166:134–142. doi: 10.1111/j.1365-2249.2011.04445.x. PubMed DOI PMC
Kong X, Sun R, Chen Y, et al. γδT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol. 2014;193:1645–1653. doi: 10.4049/jimmunol.1303432. PubMed DOI
Pallett LJ, Gill US, Quaglia A, et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat Med. 2015;21:591–600. doi: 10.1038/nm.3856. PubMed DOI PMC
Cesarman E. Gammaherpesviruses and lymphoproliferative disorders. Annu Rev Pathol Mech Dis. 2014;9:349–372. doi: 10.1146/annurev-pathol-012513-104656. PubMed DOI
Romano A, Parrinello NL, Vetro C, et al. Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin Lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol. 2015;168:689–700. doi: 10.1111/bjh.13198. PubMed DOI
Zhang H, Li Z-L, Ye S-B, et al. Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunol Immunother. 2015;64:1587–1599. doi: 10.1007/s00262-015-1765-6. PubMed DOI PMC
Cai T-T, Ye S-B, Liu Y-N, et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma. PLOS Pathog. 2017;13:e1006503. doi: 10.1371/journal.ppat.1006503. PubMed DOI PMC
Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol. 2016;138:666–675. doi: 10.1016/j.jaci.2016.07.007. PubMed DOI PMC
Yang Q, Qiu H, Xie H, et al. A Schistosoma japonicum infection promotes the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. J Immunol. 2017;198:4716–4727. doi: 10.4049/jimmunol.1601860. PubMed DOI
Valanparambil RM, Tam M, Jardim A, et al. Primary Heligmosomoides polygyrus bakeri infection induces myeloid-derived suppressor cells that suppress CD4+ Th2 responses and promote chronic infection. Mucosal Immunol. 2017;10:238–249. doi: 10.1038/mi.2016.36. PubMed DOI
Van Ginderachter JA, Beschin A, De Baetselier P, Raes G. Myeloid-derived suppressor cells in parasitic infections. Eur J Immunol. 2010;40:2976–2985. doi: 10.1002/eji.201040911. PubMed DOI
Brys L, Beschin A, Raes G, et al. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol. 2005;174:6095–6104. doi: 10.4049/jimmunol.174.10.6095. PubMed DOI
Pereira WF, Ribeiro-Gomes FL, Guillermo LVC, et al. Myeloid-derived suppressor cells help protective immunity to Leishmania major infection despite suppressed T cell responses. J Leukoc Biol. 2011;90:1191–1197. doi: 10.1189/jlb.1110608. PubMed DOI
Schmid M, Zimara N, Wege AK, Ritter U. Myeloid-derived suppressor cell functionality and interaction with Leishmania major parasites differ in C57BL/6 and BALB/c mice. Eur J Immunol. 2014;44:3295–3306. doi: 10.1002/eji.201344335. PubMed DOI
Singh A, Lelis F, Braig S, et al. Differential regulation of myeloid-derived suppressor cells by Candida species. Front Microbiol. 2016;7:1624. doi: 10.3389/fmicb.2016.01624. PubMed DOI PMC
Zhang C, Lei G-S, Shao S, et al. Accumulation of myeloid-derived suppressor cells in the lungs during Pneumocystis pneumonia. Infect Immun. 2012;80:3634–3641. doi: 10.1128/IAI.00668-12. PubMed DOI PMC
Lei G-S, Zhang C, Shao S, et al. All-trans retinoic acid in combination with primaquine clears pneumocystis infection. PLoS One. 2013;8:e53479. doi: 10.1371/journal.pone.0053479. PubMed DOI PMC
Lei G-S, Zhang C, Lee C-H. Myeloid-derived suppressor cells impair alveolar macrophages through PD-1 receptor ligation during Pneumocystis pneumonia. Infect Immun. 2015;83:572–582. doi: 10.1128/IAI.02686-14. PubMed DOI PMC
Sui Y, Frey B, Wang Y, et al. Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathog. 2017;13:e1006395. doi: 10.1371/journal.ppat.1006395. PubMed DOI PMC
Keller C, Hoffmann R, Lang R, et al. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun. 2006;74:4295–4309. doi: 10.1128/IAI.00057-06. PubMed DOI PMC
Eruslanov EB, Lyadova IV, Kondratieva TK, et al. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun. 2005;73:1744–1753. doi: 10.1128/IAI.73.3.1744-1753.2005. PubMed DOI PMC
Tebartz C, Horst SA, Sparwasser T, et al. A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection. J Immunol. 2015;194:1100–1111. doi: 10.4049/jimmunol.1400196. PubMed DOI
Mourik BC, Leenen PJM, de Knegt GJ, et al. Immunotherapy added to antibiotic treatment reduces relapse of disease in a mouse model of tuberculosis. Am J Respir Cell Mol Biol. 2017;56:233–241. doi: 10.1165/rcmb.2016-0185OC. PubMed DOI
Chandra D, Quispe-Tintaya W, Jahangir A, et al. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer. Cancer Immunol Res. 2014;2:901–910. doi: 10.1158/2326-6066.CIR-13-0123. PubMed DOI PMC
Liu F, Li X, Lu C, et al. Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget. 2016;7:83907–83925. doi: 10.18632/oncotarget.13438. PubMed DOI PMC
Tavazoie MF, Pollack I, Tanqueco R, et al. LXR/ApoE activation restricts innate immune suppression in cancer. Cell. 2018;172:825–840.e18. doi: 10.1016/j.cell.2017.12.026. PubMed DOI PMC
Ahidjo BA, Bishai WR. Phosphodiesterase inhibitors as adjunctive therapies for tuberculosis. EBioMedicine. 2016;4:7–8. doi: 10.1016/j.ebiom.2016.02.016. PubMed DOI PMC
Obregón-Henao A, Henao-Tamayo M, Orme IM, Ordway DJ. Gr1(int)CD11b+ myeloid-derived suppressor cells in Mycobacterium tuberculosis infection. PLoS One. 2013;8:e80669. doi: 10.1371/journal.pone.0080669. PubMed DOI PMC
Vilaplana C, Marzo E, Tapia G, et al. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis. 2013;208:199–202. doi: 10.1093/infdis/jit152. PubMed DOI
Zhang S, Wu K, Liu Y, et al. Finasteride Enhances the generation of human myeloid-derived suppressor cells by up-regulating the COX2/PGE2 pathway. PLoS One. 2016;11:e0156549. doi: 10.1371/journal.pone.0156549. PubMed DOI PMC
Rieber N, Gille C, Köstlin N, et al. Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin Exp Immunol. 2013;174:45–52. doi: 10.1111/cei.12143. PubMed DOI PMC
Flores RR, Clauson CL, Cho J, et al. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism. Aging Cell. 2017;16:480–487. doi: 10.1111/acel.12571. PubMed DOI PMC