Exploring virulence characteristics of Klebsiella pneumoniae isolates recovered from a Greek hospital
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5103
Common Agricultural Policy
PubMed
40415138
DOI
10.1007/s00438-025-02258-2
PII: 10.1007/s00438-025-02258-2
Knihovny.cz E-zdroje
- Klíčová slova
- Klebsiella pneumoniae, Biofilm formation, Carbapenemases, Multidrug resistance, Serum resistant, Virulence,
- MeSH
- faktory virulence * genetika MeSH
- genom bakteriální MeSH
- infekce bakteriemi rodu Klebsiella * mikrobiologie genetika MeSH
- Klebsiella pneumoniae * genetika patogenita izolace a purifikace MeSH
- lidé MeSH
- multilokusová sekvenční typizace MeSH
- nemocnice MeSH
- plazmidy genetika MeSH
- sekvenování celého genomu MeSH
- virulence genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Řecko MeSH
- Názvy látek
- faktory virulence * MeSH
The objective of this study was to characterize the virulence characteristics of a collection of Klebsiella pneumoniae isolates collected from different clinical sources. A collection of 60 non-repetitive K. pneumoniae isolates, was studied. In vitro, virulence was analyzed by testing the survival of bacteria in pooled human serum. Isolates were typed by MLST. The genomes of 23 K. pneumoniae isolates, representatives of different STs and virulence profiles, were completely sequenced using the Illumina platform. Of note, 26/60 of K. pneumoniae isolates were resistant to killing by complement. Serum-resistant isolates belonged to distinct STs. Analysis of WGS data with VFDB showed the presence of several virulence genes related various virulence functions. Specifically, serum-resistant isolates carried a higher number of ORFs, which were associated with serum resistance, compared to serum-sensitive isolates. Additionally, analysis of WGS data showed the presence of multiple plasmid replicons that could be involved with the spread and acquisition of resistance and virulence genes. In conclusion, analysis of virulence characteristics showed that an important percentage (31.6%) of K. pneumoniae isolates were in vitro virulent by exhibiting resistance to serum. Thus, the presence of several virulence factors, in combination with the presence of multidrug resistance, could challenge antimicrobial therapy of infections caused by such bacteria.
Zobrazit více v PubMed
Apostolaki K, Gagaletsios LA, Papagiannitsis CC, Petinaki E (2024) Macrolides impact the growth ability of clinical Pseudomonas aeruginosa through quorum-sensing systems. J Chemother 36:24–30. https://doi.org/10.1080/1120009X.2023.2296150 PubMed DOI
Aschtgen MS, Gavioli M, Dessen A, Lloubès R, Cascales E (2010) The SciZ protein anchors the enteroaggregative Escherichia coli type VI secretion system to the cell wall. Mol Microbiol 75:886–899. https://doi.org/10.1111/j.1365-2958.2009.07028.x PubMed DOI
Banzhaf M, Yau HC, Verheul J, Lodge A, Kritikos G, Mateus A, Cordier B, Hov AK, Stein F, Wartel M, Pazos M, Solovyova AS, Breukink E, van Teeffelen S, Savitski MM, den Blaauwen T, Typas A, Vollmer W (2020) Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi-enzyme complexes in Escherichia coli. EMBO J 39:e102246. https://doi.org/10.15252/embj.2019102246 PubMed DOI PMC
Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, DelannoyVieillard AS, Garin B, Le Hello S, Arlet G, Nicolas-Chanoine MH, Decré D, Brisse S (2014) Genomic definition of hypervirulent and multidrugresistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis 20:1812–1820. https://doi.org/10.3201/eid2011.140206 PubMed DOI PMC
Campos M, Antunes JC, Ferreira LC RB (2020) Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 15:649–677. https://doi.org/10.2217/fmb-2019-0333 DOI
Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Aarestrup FM, Hasman H (2014) In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. https://doi.org/10.1128/AAC.02412-14 PubMed DOI PMC
Chen M, Li Y, Zhang J, Chen S, Zhang Y (2020) Molecular and genetic characteristics of highly virulent Klebsiella pneumoniae in respiratory infection. Chin J Hosp Infect Dis 30:6–9
Chen L, Zhou Y, Wang S, Wu C, Zhou P, Wang B, Chen Z, Yu F (2023) Genomic analysis of Carbapenem-Resistant hypervirulent Klebsiella pneumoniae in a Chinese tertiary hospital. Infect Drug Resist 16:6385–6394. https://doi.org/10.2147/IDR.S425949 PubMed DOI PMC
Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Neron B, Rocha EPC, Vergnaud G, Gautheret D, Pourcel C (2018) CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 46:W246–W251. https://doi.org/10.1093/nar/gky425 PubMed DOI PMC
Cubero M, Grau I, Tubau F, Pallares R, Dominguez MA, Linares J, Ardanuy C (2016) Hypervirulent Klebsiella pneumoniae clones causing bacteraemia in adults in a teaching hospital in Barcelona, Spain (2007–2013). Clin Microbiol Infect 22:154–160. https://doi.org/10.1016/j.cmi.2015.09.025 PubMed DOI
David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, Abudahab K, Goater R, Giani T, Errico G, Aspbury M, Sjunnebo S, EuSCAPE Working Group; ESGEM Study Group, Feil EJ, Rossolini GM, Aanensen DM, Grundmann H (2019) Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol 2019 4:1919–1929. https://doi.org/10.1038/s41564-019-0492-8 DOI
Davoudabadi S, Goudarzi M, Hashemi A (2023) Detection of virulence factors and antibiotic resistance among Klebsiella pneumoniae isolates from Iran. Biomed Res Int 2023(3624497). https://doi.org/10.1155/2023/3624497
Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S (2005) Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–4182. https://doi.org/10.1128/JCM.43.8.4178-4182.2005 PubMed DOI PMC
Dybowska-Sarapuk Ł, Kotela A, Krzemiński J, Wróblewska M, Marchel H, Romaniec M, Łęgosz P, Jakubowska M (2017) Graphene nanolayers as a new method for bacterial biofilm prevention: preliminary results. J AOAC Int 100:900–904. https://doi.org/10.5740/jaoacint.17-0164 PubMed DOI
Foxman B (2010) The epidemiology of urinary tract infection. Nat Rev Urol 7:653–660. https://doi.org/10.1038/nrurol.2010.190 PubMed DOI
Gagaletsios LA, Papagiannitsis CC, Petinaki E (2022) Prevalence and analysis of CRISPR/Cas systems in Pseudomonas aeruginosa isolates from Greece. Mol Genet Genomics 297:1767–1776. https://doi.org/10.1007/s00438-022-01957-4 PubMed DOI
Giakkoupi P, Papagiannitsis CC, Miriagou V, Pappa O, Polemis M, Tryfinopoulou K, Tzouvelekis LS, Vatopoulos AC (2011) An update of the evolving epidemic of bla PubMed DOI
Gu Y, Wang X, Zhang W, Weng R, Shi Q, Hou X, Wang H, Deng M, Mou J, Jiang Y (2025) Dissemination of bla PubMed DOI
Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. https://doi.org/10.1038/nrmicro821 PubMed DOI
Hamad PA (2023) Phenotypic and molecular detection of biofilm formation in Methicillin-Resistant Staphylococcus Aureus isolated from different clinical sources in Erbil City. Mediterr J Hematol Infect Dis 15:e2023016. https://doi.org/10.4084/MJHID.2023.016 PubMed DOI PMC
Hamilos DL (2019) Biofilm formations in pediatric respiratory tract infection part 2: mucosal biofilm formation by respiratory pathogens and current and future therapeutic strategies to inhibit biofilm formation or eradicate established biofilm. Curr Infect Dis Rep 21:8. https://doi.org/10.1007/s11908-019-0657-x PubMed DOI
Hatoum-Aslan A, Marraffini LA (2014) Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. Curr Opin Microbiol 17:82–90. https://doi.org/10.1016/j.mib.2013.12.001 PubMed DOI
Hnamte S, Parasuraman P, Ranganathan S, Ampasala DR, Reddy D, Kumavath RN, Suchiang K, Mohanty SK, Busi S (2019) Mosloflavone attenuates the quorum sensing controlled virulence phenotypes and biofilm formation in Pseudomonas aeruginosa PAO1: in vitro, in vivo and in silico approach. Microb Pathog 31:128–134. https://doi.org/10.1016/j.micpath.2019.04.005
Hong HX, Huo BH, Xiang TX, Wei DD, Huang QS, Liu P, Zhang W, Xu Y, Liu Y (2024) Virulence plasmid with IroBCDN deletion promoted cross-regional transmission of ST11-KL64 carbapenem-resistant hypervirulent Klebsiella pneumoniae in central China. BMC Microbiol 24:400. https://doi.org/10.1186/s12866-024-03564-2 PubMed DOI PMC
Hu FP, Guo Yl, Zhu DM (2020) Surveillance of bacterial resistance in CHINET tertiary hospitals in 2019. Chin J Infect Chemother 20:233–243
Hu Y, Anes J, Devineau S, Fanning S (2021) Klebsiella pneumoniae: prevalence, reservoirs, antimicrobial resistance, pathogenicity, and infection: A hitherto unrecognized zoonotic bacterium. Foodborne Pathog Dis 18:63–84. https://doi.org/10.1089/fpd.2020.2847 PubMed DOI
Jia X, Zhu Y, Jia P, Li C, Chu X, Sun T, Liu X, Yu W, Chen F, Xu Y, Yang Q (2024) The key role of iroBCDN-lacking pLVPK-like plasmid in the evolution of the most prevalent hypervirulent carbapenem-resistant ST11-KL64 Klebsiella pneumoniae in China. Drug Resist Updat 77:101137. https://doi.org/10.1016/j.drup.2024.101137 PubMed DOI
Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O (2014) Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS ONE 9:e104984. https://doi.org/10.1371/journal.pone.0104984 PubMed DOI PMC
Kalscheuer R, Weinrick B, Veeraraghavan U, Besra GS, Jacobs WR Jr (2010) Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 107:21761–21766. https://doi.org/10.1073/pnas.1014642108 PubMed DOI PMC
Karampatakis T, Antachopoulos C, Iosifidis E, Tsakris A, Roilides E (2016) Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in Greece. Future Microbiol 11:809–823. https://doi.org/10.2217/fmb-2016-0042 PubMed DOI
Kraftova L, Finianos M, Studentova V, Chudejova K, Jakubu V, Zemlickova H, Papagiannitsis CC, Bitar I, Hrabak J (2021) Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals. Sci Rep 11:15732. https://doi.org/10.1038/s41598-021-95285-z PubMed DOI PMC
Labigne A, Cussac V, Courcoux P (1991) Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J Bacteriol 173:1920–1931. https://doi.org/10.1128/jb.173.6.1920-1931.1991 PubMed DOI PMC
Lam MMC, Wick RR, Judd LM, Holt KE, Wyres KL (2022) Kaptive 2.0: updated capsule and lipopolysaccharide locus typing for the Klebsiella pneumoniae species complex. Microb Genom 8:000800. https://doi.org/10.1099/mgen.0.000800 PubMed DOI PMC
Li B, Zhao Y, Liu C, Chen Z, Zhou D (2014) Molecular pathogenesis of Klebsiella pneumoniae. Fut Microbiol 9:1071–1081. https://doi.org/10.2217/fmb.14.48 DOI
Liu M, Liu H, Sun L, Dong J, Xue Y, Chen S, Jin Q (2005) Construction, detection and microarray analysis on the Shigella flexneri 2a sitc mutant. Sci China C Life Sci 48:228–240. https://doi.org/10.1007/BF03183616 PubMed DOI
Liu B, Zheng DD, Jin Q, Chen LH, Yang J (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47:D687–D692. https://doi.org/10.1093/nar/gky1080 PubMed DOI
Malberg Tetzschner AM, Johnson JR, Johnston BD, Lund O, Scheutz F (2020) In Silico genotyping of Escherichia coli isolates for extraintestinal virulence genes by use of Whole-Genome sequencing data. J Clin Microbiol 58:e01269–e01220. https://doi.org/10.1128/JCM.01269-20 PubMed DOI PMC
Mansour W, Grami R, Ben Haj Khalifa A, Dahmen S, Châtre P, Haenni M, Aouni M, Madec JY (2015) Dissemination of multidrug-resistant bla PubMed DOI
Marko VA, Kilmury SLN, MacNeil LT, Burrows LL (2018) Pseudomonas aeruginosa type IV minor Pilins and PilY1 regulate virulence by modulating FimS-AlgR activity. PLoS Pathog 14:e1007074. https://doi.org/10.1371/journal.ppat.1007074 PubMed DOI PMC
Mike LA, Stark AJ, Forsyth VS, Vornhagen J, Smith SN, Bachman MA, Mobley HLT (2021) A systematic analysis of hypermucoviscosity and capsule reveals distinct and overlapping genes that impact Klebsiella pneumoniae fitness. PLoS Pathog. 2021;17(3):e1009376. https://doi.org/10.1371/journal.ppat.1009376
Moghaddam M, Goldsmith KL, Kerwick RA (1971) The Preparation of blood grouping serum from human citrated plasma. Vox Sang 20:277–280 PubMed DOI
Moulding PB, El-Halfawy OM (2024) Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Can J Microbiol 70:405–425. https://doi.org/10.1139/cjm-2024-0017 PubMed DOI
Olanrewaju OS, Molale-Tom LG, Bezuidenhout CC (2024) World genomic diversity, antibiotic resistance, and virulence in South African Enterococcus faecalis and Enterococcus lactis isolates. J Microbiol Biotechnol 40:289. https://doi.org/10.1007/s11274-024-04098-5 DOI
Paczosa MK, Mecsas J (2016) Klebsiella pneumoniae: going on the offense with a strong defence. Microbiol Mol Biol Rev 80:629–661. https://doi.org/10.1128/MMBR.00078-15 PubMed DOI PMC
Papagiannitsis CC, Di Pilato V, Giani T, Giakkoupi P, Riccobono E, Landini G, Miriagou V, Vatopoulos AC, Rossolini GM (2016) Characterization of KPC-encoding plasmids from two endemic settings, Greece and Italy. J Antimicrob Chemother 71:2824–2830. https://doi.org/10.1093/jac/dkw227 PubMed DOI
Papagiannitsis CC, Medvecky M, Chudejova K, Skalova A, Rotova V, Spanelova P, Jakubu V, Zemlickova H, Hrabak J, Czech Participants of the European Antimicrobial Resistance Surveillance Network (2017) Molecular characterization of carbapenemase-producing Pseudomonas aeruginosa of Czech origin and evidence for clonal spread of extensively resistant sequence type 357 expressing IMP-7 metallo-β-lactamase. Antimicrob Agents Chemother 61:e01811–e01817. https://doi.org/10.1128/AAC.01811-17 PubMed DOI PMC
Piekarska K, Zacharczuk K, Wołkowicz T, Wolaniuk N, Rzeczkowska M, Gierczyński R (2019) Emergence of Enterobacteriaceae co-producing CTX-M-15, arma and PMQR in Poland. Adv Clin Exp Med 28:249–254. https://doi.org/10.17219/acem/94165 PubMed DOI
Rakovitsky N, Lurie-Weinberger MN, Hameir A, Wulffhart L, Keren Paz A, Schwartz D, Carmeli Y (2023) Phenotypic and genomic characterization of nine String-Positive Carbapenem-Resistant Acinetobacter baumannii isolates from Israel. Microbiol Spectr 11:e0300222. https://doi.org/10.1128/spectrum.03002-22 PubMed DOI
Russo TA, Marr CM (2019) Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev 32:e00001–e19. https://doi.org/10.1128/CMR.00001-19 PubMed DOI PMC
Shon AS, Bajwa RP, Russo TA (2013) Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 4:107–118. https://doi.org/10.4161/viru.22718 PubMed DOI PMC
Tartor YH, Abd El-Aziz NK, Gharieb RMA, El Damaty HM, Enany S, Soliman EA, Abdellatif SS, Attia ASA, Bahnass MM, El-Shazly YA, Elbediwi M, Ramadan H (2021) Whole-Genome sequencing of Gram-Negative Bacteria isolated from bovine mastitis and Raw milk: the first emergence of colistin mcr-10 and fosfomycin fosA5 resistance genes in Klebsiella pneumoniae in middle East. Front Microbiol 12:770813. https://doi.org/10.3389/fmicb.2021.770813 PubMed DOI PMC
Tryfinopoulou K, Linkevicius M, Pappa O, Alm E, Karadimas K, Svartström O, Polemis M, Mellou K, Maragkos A, Brolund A, Fröding I, David S, Vatopoulos A, Palm D, Monnet DL, Zaoutis T, Kohlenberg A, Greek CCRE study group, Members of the Greek CCRE study group (2023) Emergence and persistent spread of carbapenemase-producing Klebsiella pneumoniae high-risk clones in Greek hospitals, 2013 to 2022. Euro Surveill 28:2300571. https://doi.org/10.2807/1560-7917.ES.2023.28.47.2300571 PubMed DOI PMC
Wang G, Zhao G, Chao X, Xie L, Wang H (2020) The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int J Environ Res Public Health 17:6278. https://doi.org/10.3390/ijerph17176278 PubMed DOI PMC
Weening EH, Barker JD, Laarakker MC, Humphries AD, Tsolis RM, Bäumler AJ (2005) The Salmonella enterica serotype typhimurium lpf, bcf, stb, stc, std, and Sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 73:3358–3366. https://doi.org/10.1128/IAI.73.6.3358-3366.2005 PubMed DOI PMC
Woodford N, Turton JF, Livermore DM (2011) Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35:736–755. https://doi.org/10.1111/j.1574-6976.2011.00268.x PubMed DOI
World Health Organization (2024) Disease Outbreak News; Antimicrobial Resistance, Hypervirulent Klebsiella pneumoniae - Global situation. Available at: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON527
Yang F, Deng B, Liao W, Wang P, Chen P, Wei J (2019) High rate of multiresistant Klebsiella pneumoniae from human and animal origin. Infect Drug Resist 12:2729–2737. https://doi.org/10.2147/IDR.S219155 PubMed DOI PMC
Ye Y, Xu L, Han Y, Chen Z, Liu C, Ming L (2018) Mechanism for carbapenem resistance of clinical Enterobacteriaceae isolates. Exp Ther Med 15:1143–1149. https://doi.org/10.3892/etm.2017.5485 PubMed DOI
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644 PubMed DOI PMC
Zheng B, Xu H, Lv T, Guo L, Xiao Y, Huang C, Zhang S, Chen Y, Han H, Shen P, Xiao Y, Li L (2020) Stool samples of acute diarrhea inpatients as a reservoir of ST11 hypervirulent KPC-2-Producing Klebsiella pneumoniae. mSystems 5:e00498–e00420. https://doi.org/10.1128/mSystems.00498-20 PubMed DOI PMC