Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals

. 2021 Aug 03 ; 11 (1) : 15732. [epub] 20210803

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34344951
Odkazy

PubMed 34344951
PubMed Central PMC8333104
DOI 10.1038/s41598-021-95285-z
PII: 10.1038/s41598-021-95285-z
Knihovny.cz E-zdroje

The aim of the present study is to describe the ongoing spread of the KPC-producing strains, which is evolving to an epidemic in Czech hospitals. During the period of 2018-2019, a total of 108 KPC-producing Enterobacterales were recovered from 20 hospitals. Analysis of long-read sequencing data revealed the presence of several types of blaKPC-carrying plasmids; 19 out of 25 blaKPC-carrying plasmids could be assigned to R (n = 12), N (n = 5), C (n = 1) and P6 (n = 1) incompatibility (Inc) groups. Five of the remaining blaKPC-carrying plasmids were multireplicon, while one plasmid couldn't be typed. Additionally, phylogenetic analysis confirmed the spread of blaKPC-carrying plasmids among different clones of diverse Enterobacterales species. Our findings demonstrated that the increased prevalence of KPC-producing isolates was due to plasmids spreading among different species. In some districts, the local dissemination of IncR and IncN plasmids was observed. Additionally, the ongoing evolution of blaKPC-carrying plasmids, through genetic rearrangements, favours the preservation and further dissemination of these mobile genetic elements. Therefore, the situation should be monitored, and immediate infection control should be implemented in hospitals reporting KPC-producing strains.

Zobrazit více v PubMed

Ambler RP. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980;289(1036):321–331. doi: 10.1098/rstb.1980.0049. PubMed DOI

Queenan A, Bush K. Carbapenemases: The versatile β-lactamases. Clin. Microbiol. Rev. 2007;20:440–458. doi: 10.1128/CMR.00001-07. PubMed DOI PMC

Yigit H, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a Carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001;45:1151–1161. doi: 10.1128/AAC.45.4.1151-1161.2001. PubMed DOI PMC

Chen L, et al. Complete nucleotide sequences ofblaKPC-4- andblaKPC-5-Harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. Antimicrob. Agents Chemother. 2012;57:269–276. doi: 10.1128/AAC.01648-12. PubMed DOI PMC

Albiger B, Glasner C, Struelens M, Grundmann H, Monnet D. Carbapenemase- producing Enterobacteriaceae in Europe: Assessment by national experts from 38 countries, May 2015. Eurosurveillance. 2015;20:2. doi: 10.2807/1560-7917.ES.2015.20.45.30062. PubMed DOI

Lee C, et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 2016;7:2. PubMed PMC

Grundmann, H. et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. (2021). PubMed

Villegas M, et al. First Identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase. Antimicrob. Agents Chemother. 2007;51:1553–1555. doi: 10.1128/AAC.01405-06. PubMed DOI PMC

Cuzon G, et al. Wide dissemination of Pseudomonas aeruginosa producing β-lactamase blaKPC-2gene in Colombia. Antimicrob. Agents Chemother. 2011;55:5350–5353. doi: 10.1128/AAC.00297-11. PubMed DOI PMC

Stoesser N, et al. Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli. Sci. Rep. 2017;7:2. doi: 10.1038/s41598-017-06256-2. PubMed DOI PMC

Naas T, et al. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob. Agents Chemother. 2008;52:1257–1263. doi: 10.1128/AAC.01451-07. PubMed DOI PMC

Bitar I, et al. Interplay among IncA and blaKPC-carrying plasmids in Citrobacter freundii. Antimicrob.Agents Chemotherapy. 2019;63:2. PubMed PMC

Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: Biology, epidemiology, and management. Ann. N. Y. Acad. Sci. 2014;1323:22–42. doi: 10.1111/nyas.12537. PubMed DOI

Hrabák J, et al. KPC-2-producing Klebsiella pneumoniae isolated from a Czech patient previously hospitalized in Greece and in vivo selection of colistin resistance. Folia Microbiol. 2011;56:361–365. doi: 10.1007/s12223-011-0057-6. PubMed DOI

Hrabák J, et al. Carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011. Eurosurveillance. 2013;18:2. doi: 10.2807/1560-7917.ES2013.18.45.20626. PubMed DOI

Kukla R, et al. Characterization of KPC-encoding plasmids from enterobacteriaceae isolated in a Czech hospital. Antimicrob. Agents Chemother. 2018;62:2. doi: 10.1128/AAC.02152-17. PubMed DOI PMC

Schweizer C, et al. Plasmid-mediated transmission of KPC-2 carbapenemase in enterobacteriaceae in critically ill patients. Front. Microbiol. 2019;10:2. doi: 10.3389/fmicb.2019.00276. PubMed DOI PMC

Majewski P, et al. Emergence of a multidrug-resistant Citrobacter freundii ST8 harboring an unusual VIM-4 gene cassette in Poland. Int. J. Infect. Dis. 2017;61:70–73. doi: 10.1016/j.ijid.2017.05.016. PubMed DOI

Hoffmann H, Roggenkamp A. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 2003;69:5306–5318. doi: 10.1128/AEM.69.9.5306-5318.2003. PubMed DOI PMC

Papagiannitsis C, et al. Characterization of KPC-encoding plasmids from two endemic settings, Greece and Italy. J. Antimicrob. Chemother. 2016;71:2824–2830. doi: 10.1093/jac/dkw227. PubMed DOI

Woodford N, Turton J, Livermore D. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 2011;35:736–755. doi: 10.1111/j.1574-6976.2011.00268.x. PubMed DOI

Treangen T, Ondov B, Koren S, Phillippy A. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15:2. doi: 10.1186/s13059-014-0524-x. PubMed DOI PMC

GobeilleParé S, et al. Arrival of the rare carbapenemase OXA-204 in Canada causing a multispecies outbreak over 3 years. J. Antimicrob. Chemotherapy. 2020;75:2787–2796. doi: 10.1093/jac/dkaa279. PubMed DOI

Hendrickx A, et al. Plasmid diversity among genetically related Klebsiella pneumoniae blaKPC-2 and blaKPC-3 isolates collected in the Dutch national surveillance. Sci. Rep. 2020;10:2. doi: 10.1038/s41598-020-73440-2. PubMed DOI PMC

Leavitt A, Chmelnitsky I, Carmeli Y, Navon-Venezia S. Complete nucleotide sequence of KPC-3-encoding plasmid pKpQIL in the epidemic Klebsiella pneumoniae sequence type 258. Antimicrob. Agents Chemother. 2010;54:4493–4496. doi: 10.1128/AAC.00175-10. PubMed DOI PMC

Giakkoupi P, et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009–10) J. Antimicrob. Chemother. 2011;66:1510–1513. doi: 10.1093/jac/dkr166. PubMed DOI

Studentova V, et al. Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain. Antimicrob. Agents Chemother. 2014;59:1325–1328. doi: 10.1128/AAC.04095-14. PubMed DOI PMC

Papagiannitsis C, Miriagou V, Giakkoupi P, Tzouvelekis L, Vatopoulos A. Characterization of pKP1780, a novel IncR plasmid from the emerging Klebsiella pneumoniae ST147, encoding the VIM-1 metallo-β-lactamase. J. Antimicrob. Chemother. 2013;68:2259–2262. doi: 10.1093/jac/dkt196. PubMed DOI

Caltagirone M, et al. Occurrence of extended spectrum β-lactamases, KPC-type, and MCR-1.2-producing enterobacteriaceae from wells, river water, and wastewater treatment plants in Oltrepò Pavese Area Northern Italy. Front. Microbiol. 2017;8:2. doi: 10.3389/fmicb.2017.02232. PubMed DOI PMC

Rotova V, Papagiannitsis C, Skalova A, Chudejova K, Hrabak J. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J. Microbiol. Methods. 2017;137:30–33. doi: 10.1016/j.mimet.2017.04.003. PubMed DOI

Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004;48:15–22. doi: 10.1128/AAC.48.1.15-22.2004. PubMed DOI PMC

Ellington M, Kistler J, Livermore D, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo- -lactamases. J. Antimicrob. Chemother. 2006;59:321–322. doi: 10.1093/jac/dkl481. PubMed DOI

Yong D, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009;53:5046–5054. doi: 10.1128/AAC.00774-09. PubMed DOI PMC

Bolger A, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bankevich A, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Graul, Christian: leafletR: Interactive Web-Maps Based on the Leaflet JavaScript Library. R package version 0.4–0, (2016). at <http://cran.r-project.org/package=leafletR>

RStudio Team RStudio: Integrated Development for R. RStudio, Inc., Boston, MA (2019) at <http://www.rstudio.com/>

R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020) at <https://www.R-project.org/>

Zankari E, et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC

Alcock B, et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2019 doi: 10.1093/nar/gkz935. PubMed DOI PMC

Carattoli A, et al. In SilicoDetection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC

Larsen M, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012;50:1355–1361. doi: 10.1128/JCM.06094-11. PubMed DOI PMC

Alikhan N, Petty N, Ben Zakour N, Beatson S. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011;12:2. doi: 10.1186/1471-2164-12-402. PubMed DOI PMC

Sullivan MJ, Petty NK, Beatson SA. Easyfig: A genome comparison visualizer. Bioinformatics. 2011;27(7):1009–1010. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC

Vatopoulos A, Philippon A, Tzouvelekis L, Komninou Z, Legakis N. Prevalence of a transferable SHV-5 type β-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J. Antimicrob. Chemother. 1990;26:635–648. doi: 10.1093/jac/26.5.635. PubMed DOI

Price M, Dehal P, Arkin A. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC

Letunic, I. iTOL: Interactive Tree Of Life. Itol.embl.de (2021). at <https://itol.embl.de/> PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...