Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34344951
PubMed Central
PMC8333104
DOI
10.1038/s41598-021-95285-z
PII: 10.1038/s41598-021-95285-z
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence * MeSH
- bakteriální proteiny genetika metabolismus MeSH
- beta-laktamasy metabolismus MeSH
- epidemie MeSH
- infekce bakteriemi rodu Klebsiella epidemiologie mikrobiologie MeSH
- Klebsiella pneumoniae izolace a purifikace metabolismus MeSH
- lidé MeSH
- nemocnice statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- beta-laktamasy MeSH
- carbapenemase MeSH Prohlížeč
The aim of the present study is to describe the ongoing spread of the KPC-producing strains, which is evolving to an epidemic in Czech hospitals. During the period of 2018-2019, a total of 108 KPC-producing Enterobacterales were recovered from 20 hospitals. Analysis of long-read sequencing data revealed the presence of several types of blaKPC-carrying plasmids; 19 out of 25 blaKPC-carrying plasmids could be assigned to R (n = 12), N (n = 5), C (n = 1) and P6 (n = 1) incompatibility (Inc) groups. Five of the remaining blaKPC-carrying plasmids were multireplicon, while one plasmid couldn't be typed. Additionally, phylogenetic analysis confirmed the spread of blaKPC-carrying plasmids among different clones of diverse Enterobacterales species. Our findings demonstrated that the increased prevalence of KPC-producing isolates was due to plasmids spreading among different species. In some districts, the local dissemination of IncR and IncN plasmids was observed. Additionally, the ongoing evolution of blaKPC-carrying plasmids, through genetic rearrangements, favours the preservation and further dissemination of these mobile genetic elements. Therefore, the situation should be monitored, and immediate infection control should be implemented in hospitals reporting KPC-producing strains.
Biomedical Center Faculty of Medicine Charles University Pilsen Czech Republic
Department of Microbiology University Hospital of Larissa Larissa Greece
Zobrazit více v PubMed
Ambler RP. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980;289(1036):321–331. doi: 10.1098/rstb.1980.0049. PubMed DOI
Queenan A, Bush K. Carbapenemases: The versatile β-lactamases. Clin. Microbiol. Rev. 2007;20:440–458. doi: 10.1128/CMR.00001-07. PubMed DOI PMC
Yigit H, et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a Carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001;45:1151–1161. doi: 10.1128/AAC.45.4.1151-1161.2001. PubMed DOI PMC
Chen L, et al. Complete nucleotide sequences ofblaKPC-4- andblaKPC-5-Harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. Antimicrob. Agents Chemother. 2012;57:269–276. doi: 10.1128/AAC.01648-12. PubMed DOI PMC
Albiger B, Glasner C, Struelens M, Grundmann H, Monnet D. Carbapenemase- producing Enterobacteriaceae in Europe: Assessment by national experts from 38 countries, May 2015. Eurosurveillance. 2015;20:2. doi: 10.2807/1560-7917.ES.2015.20.45.30062. PubMed DOI
Lee C, et al. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 2016;7:2. PubMed PMC
Grundmann, H. et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. (2021). PubMed
Villegas M, et al. First Identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase. Antimicrob. Agents Chemother. 2007;51:1553–1555. doi: 10.1128/AAC.01405-06. PubMed DOI PMC
Cuzon G, et al. Wide dissemination of Pseudomonas aeruginosa producing β-lactamase blaKPC-2gene in Colombia. Antimicrob. Agents Chemother. 2011;55:5350–5353. doi: 10.1128/AAC.00297-11. PubMed DOI PMC
Stoesser N, et al. Genomic epidemiology of global Klebsiella pneumoniae carbapenemase (KPC)-producing Escherichia coli. Sci. Rep. 2017;7:2. doi: 10.1038/s41598-017-06256-2. PubMed DOI PMC
Naas T, et al. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob. Agents Chemother. 2008;52:1257–1263. doi: 10.1128/AAC.01451-07. PubMed DOI PMC
Bitar I, et al. Interplay among IncA and blaKPC-carrying plasmids in Citrobacter freundii. Antimicrob.Agents Chemotherapy. 2019;63:2. PubMed PMC
Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: Biology, epidemiology, and management. Ann. N. Y. Acad. Sci. 2014;1323:22–42. doi: 10.1111/nyas.12537. PubMed DOI
Hrabák J, et al. KPC-2-producing Klebsiella pneumoniae isolated from a Czech patient previously hospitalized in Greece and in vivo selection of colistin resistance. Folia Microbiol. 2011;56:361–365. doi: 10.1007/s12223-011-0057-6. PubMed DOI
Hrabák J, et al. Carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011. Eurosurveillance. 2013;18:2. doi: 10.2807/1560-7917.ES2013.18.45.20626. PubMed DOI
Kukla R, et al. Characterization of KPC-encoding plasmids from enterobacteriaceae isolated in a Czech hospital. Antimicrob. Agents Chemother. 2018;62:2. doi: 10.1128/AAC.02152-17. PubMed DOI PMC
Schweizer C, et al. Plasmid-mediated transmission of KPC-2 carbapenemase in enterobacteriaceae in critically ill patients. Front. Microbiol. 2019;10:2. doi: 10.3389/fmicb.2019.00276. PubMed DOI PMC
Majewski P, et al. Emergence of a multidrug-resistant Citrobacter freundii ST8 harboring an unusual VIM-4 gene cassette in Poland. Int. J. Infect. Dis. 2017;61:70–73. doi: 10.1016/j.ijid.2017.05.016. PubMed DOI
Hoffmann H, Roggenkamp A. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 2003;69:5306–5318. doi: 10.1128/AEM.69.9.5306-5318.2003. PubMed DOI PMC
Papagiannitsis C, et al. Characterization of KPC-encoding plasmids from two endemic settings, Greece and Italy. J. Antimicrob. Chemother. 2016;71:2824–2830. doi: 10.1093/jac/dkw227. PubMed DOI
Woodford N, Turton J, Livermore D. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 2011;35:736–755. doi: 10.1111/j.1574-6976.2011.00268.x. PubMed DOI
Treangen T, Ondov B, Koren S, Phillippy A. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15:2. doi: 10.1186/s13059-014-0524-x. PubMed DOI PMC
GobeilleParé S, et al. Arrival of the rare carbapenemase OXA-204 in Canada causing a multispecies outbreak over 3 years. J. Antimicrob. Chemotherapy. 2020;75:2787–2796. doi: 10.1093/jac/dkaa279. PubMed DOI
Hendrickx A, et al. Plasmid diversity among genetically related Klebsiella pneumoniae blaKPC-2 and blaKPC-3 isolates collected in the Dutch national surveillance. Sci. Rep. 2020;10:2. doi: 10.1038/s41598-020-73440-2. PubMed DOI PMC
Leavitt A, Chmelnitsky I, Carmeli Y, Navon-Venezia S. Complete nucleotide sequence of KPC-3-encoding plasmid pKpQIL in the epidemic Klebsiella pneumoniae sequence type 258. Antimicrob. Agents Chemother. 2010;54:4493–4496. doi: 10.1128/AAC.00175-10. PubMed DOI PMC
Giakkoupi P, et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009–10) J. Antimicrob. Chemother. 2011;66:1510–1513. doi: 10.1093/jac/dkr166. PubMed DOI
Studentova V, et al. Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain. Antimicrob. Agents Chemother. 2014;59:1325–1328. doi: 10.1128/AAC.04095-14. PubMed DOI PMC
Papagiannitsis C, Miriagou V, Giakkoupi P, Tzouvelekis L, Vatopoulos A. Characterization of pKP1780, a novel IncR plasmid from the emerging Klebsiella pneumoniae ST147, encoding the VIM-1 metallo-β-lactamase. J. Antimicrob. Chemother. 2013;68:2259–2262. doi: 10.1093/jac/dkt196. PubMed DOI
Caltagirone M, et al. Occurrence of extended spectrum β-lactamases, KPC-type, and MCR-1.2-producing enterobacteriaceae from wells, river water, and wastewater treatment plants in Oltrepò Pavese Area Northern Italy. Front. Microbiol. 2017;8:2. doi: 10.3389/fmicb.2017.02232. PubMed DOI PMC
Rotova V, Papagiannitsis C, Skalova A, Chudejova K, Hrabak J. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J. Microbiol. Methods. 2017;137:30–33. doi: 10.1016/j.mimet.2017.04.003. PubMed DOI
Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004;48:15–22. doi: 10.1128/AAC.48.1.15-22.2004. PubMed DOI PMC
Ellington M, Kistler J, Livermore D, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo- -lactamases. J. Antimicrob. Chemother. 2006;59:321–322. doi: 10.1093/jac/dkl481. PubMed DOI
Yong D, et al. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 2009;53:5046–5054. doi: 10.1128/AAC.00774-09. PubMed DOI PMC
Bolger A, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Graul, Christian: leafletR: Interactive Web-Maps Based on the Leaflet JavaScript Library. R package version 0.4–0, (2016). at <http://cran.r-project.org/package=leafletR>
RStudio Team RStudio: Integrated Development for R. RStudio, Inc., Boston, MA (2019) at <http://www.rstudio.com/>
R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020) at <https://www.R-project.org/>
Zankari E, et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC
Alcock B, et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2019 doi: 10.1093/nar/gkz935. PubMed DOI PMC
Carattoli A, et al. In SilicoDetection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC
Larsen M, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012;50:1355–1361. doi: 10.1128/JCM.06094-11. PubMed DOI PMC
Alikhan N, Petty N, Ben Zakour N, Beatson S. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011;12:2. doi: 10.1186/1471-2164-12-402. PubMed DOI PMC
Sullivan MJ, Petty NK, Beatson SA. Easyfig: A genome comparison visualizer. Bioinformatics. 2011;27(7):1009–1010. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC
Vatopoulos A, Philippon A, Tzouvelekis L, Komninou Z, Legakis N. Prevalence of a transferable SHV-5 type β-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J. Antimicrob. Chemother. 1990;26:635–648. doi: 10.1093/jac/26.5.635. PubMed DOI
Price M, Dehal P, Arkin A. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Letunic, I. iTOL: Interactive Tree Of Life. Itol.embl.de (2021). at <https://itol.embl.de/> PubMed