Characterization of KPC-Encoding Plasmids from Enterobacteriaceae Isolated in a Czech Hospital
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29263065
PubMed Central
PMC5826142
DOI
10.1128/aac.02152-17
PII: AAC.02152-17
Knihovny.cz E-zdroje
- Klíčová slova
- Citrobacter freundii, Illumina sequencing, IncR, ST18, Tn4401a,
- MeSH
- antibakteriální látky terapeutické užití MeSH
- beta-laktamasy genetika metabolismus MeSH
- Citrobacter freundii účinky léků enzymologie genetika izolace a purifikace MeSH
- enterobakteriální infekce farmakoterapie epidemiologie mikrobiologie MeSH
- Escherichia coli účinky léků enzymologie genetika izolace a purifikace MeSH
- exprese genu MeSH
- izoenzymy genetika metabolismus MeSH
- karbapenemy terapeutické užití MeSH
- Klebsiella pneumoniae účinky léků enzymologie genetika izolace a purifikace MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- Morganella morganii účinky léků enzymologie genetika izolace a purifikace MeSH
- nemocnice MeSH
- otevřené čtecí rámce MeSH
- plazmidy chemie klasifikace metabolismus MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- transpozibilní elementy DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta-lactamase KPC-2 MeSH Prohlížeč
- beta-laktamasy MeSH
- izoenzymy MeSH
- karbapenemy MeSH
- transpozibilní elementy DNA MeSH
Ten Enterobacteriaceae isolates collected in a Czech hospital carried blaKPC-positive plasmids of different sizes (∼30, ∼45, and ∼80 kb). Sequencing revealed three types of plasmids (A to C) with the Tn4401a transposon. Type A plasmids comprised an IncR backbone and a KPC-2-encoding multidrug resistance (MDR) region. Type B plasmids were derivatives of type A plasmids carrying an IncN3-like segment, while type C plasmids were IncP6 plasmids sharing the same KPC-2-encoding MDR region with type A and B plasmids.
Biomedical Center Faculty of Medicine Charles University Pilsen Czech Republic
Department of Hospital Hygiene University Hospital Hradec Kralove Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, Losito AR, Bartoletti M, Del Bono V, Corcione S, Maiuro G, Tedeschi S, Celani L, Cardellino CS, Spanu T, Marchese A, Ambretti S, Cauda R, Viscoli C, Viale P; ISGRI-SITA. 2015. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother 70:2133–2143. doi:10.1093/jac/dkv086. PubMed DOI
Grundmann H, Livermore DM, Giske CG, Canton R, Rossolini GM, Campos J, Vatopoulos A, Gniadkowski M, Toth A, Pfeifer Y, Jarlier V, Carmeli Y; CNSE Working Group. 2010. Carbapenem-nonsusceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Euro Surveill 15(46):pii=19711. doi:10.2807/ese.15.46.19711-en. PubMed DOI
Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL; EuSCAPE working group. 2015. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Euro Surveill 20(45):pii=30062. doi:10.2807/1560-7917.ES.2015.20.45.30062. PubMed DOI
Hrabak J, Niemczykova J, Chudackova E, Fridrichová M, Studentová V, Cervená D, Urbášková P, Zemličková H. 2011. KPC-2-producing Klebsiella pneumoniae isolated from a Czech patient previously hospitalized in Greece and in vivo selection of colistin resistance. Folia Microbiol (Praha) 56:361–365. doi:10.1007/s12223-011-0057-6. PubMed DOI
Hrabak J, Papagiannitsis CC, Studentova V, Jakubu V, Fridrichová M, Zemlickova H; Czech Participants of European Antimicrobial Resistance Surveillance Network . 2013. Carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011. Euro Surveill 18(45):pii=20626. doi:10.2807/1560-7917.ES2013.18.45.20626. PubMed DOI
Papagiannitsis CC, Studentova V, Izdebski R, Oikonomou O, Pfeifer Y, Petinaki E, Hrabak J. 2015. MALDI-TOF MS meropenem hydrolysis assay with NH4HCO3, a reliable tool for the direct detection of carbapenemase activity. J Clin Microbiol 53:1731–1735. doi:10.1128/JCM.03094-14. PubMed DOI PMC
Papagiannitsis CC, Izdebski R, Baraniak A, Fiett J, Herda M, Hrabák J, Derde LP, Bonten MJ, Carmeli Y, Goossens H, Hryniewicz W, Brun-Buisson C, Gniadkowski M, Grabowska A, Nikonorow E, Dautzenberg MJ, Adler A, Kazmas M, Navon-Venezia S, Malhotra-Kumar S, Lammens C, Legrand P, Annane D, Chalfine A, Giamarellou H, Petrikkos GL, Nardi G, Balode A, Dumpis U, Stammet P, Arag I, Esteves F, Muzlovic I, Tomic V, Torres Mart A, Lawrence C, Salomon J, Paul M, Lerman Y, Rossini A, Salvia A, Vidal Samso J, Fierro J. 2015. Survey of metallo-β-lactamase-producing Enterobacteriaceae colonizing patients in European ICUs and rehabilitation units, 2008–11. J Antimicrob Chemother 70:1981–1988. doi:10.1093/jac/dkv055. PubMed DOI
European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2003. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9:ix–xv. doi:10.1046/j.1469-0691.2003.00790.x. PubMed DOI
Bai L, Xia S, Lan R, Liu L, Ye C, Wang Y, Jin D, Cui Z, Jing H, Xiong Y, Bai X, Sun H, Zhang J, Wang L, Xu J. 2012. Isolation and characterization of cytotoxic, aggregative Citrobacter freundii. PLoS One 7:e33054. doi:10.1371/journal.pone.0033054. PubMed DOI PMC
Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151. doi:10.1111/j.1365-2958.2006.05172.x. PubMed DOI PMC
Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–4182. doi:10.1128/JCM.43.8.4178-4182.2005. PubMed DOI PMC
Hammerum AM, Hansen F, Nielsen HL, Jakobsen L, Stegger M, Andersen PS, Jensen P, Nielsen TK, Hansen LH, Hasman H, Fuglsang-Damgaard D. 2016. Use of WGS data for investigation of a long-term NDM-1-producing Citrobacter freundii outbreak and secondary in vivo spread of blaNDM-1 to Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca. J Antimicrob Chemother 71:3117–3124. doi:10.1093/jac/dkw289. PubMed DOI
Villa J, Arana DM, Viedma E, Perez-Montarelo D, Chaves F. 2017. Characterization of mobile genetic elements carrying VIM-1 and KPC-2 carbapenemases in Citrobacter freundii isolates in Madrid. Int J Med Microbiol 307:340–345. doi:10.1016/j.ijmm.2017.07.001. PubMed DOI
Woodford N, Turton JF, Livermore DM. 2011. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35:736–755. doi:10.1111/j.1574-6976.2011.00268.x. PubMed DOI
Barton BM, Harding GP, Zuccarelli AJ. 1995. A general method for detecting and sizing large plasmids. Anal Biochem 226:235–240. doi:10.1006/abio.1995.1220. PubMed DOI
Garcia-Fernandez A, Fortini D, Veldman K, Mevius D, Carattoli A. 2009. Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. J Antimicrob Chemother 63:274–281. doi:10.1093/jac/dkn470. PubMed DOI
Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228. doi:10.1016/j.mimet.2005.03.018. PubMed DOI
Johnson TJ, Bielak EM, Fortini D, Hansen LH, Hasman H, Debroy C, Nolan LK, Carattoli A. 2012. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 68:43–50. doi:10.1016/j.plasmid.2012.03.001. PubMed DOI
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv arXiv:1303.3997 [q-bio.GN]. https://arxiv.org/abs/1303.3997.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comp Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC
Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147. doi:10.1371/journal.pone.0011147. PubMed DOI PMC
Naas T, Cuzon G, Villegas MV, Lartigue MF, Quinn JP, Nordmann P. 2008. Genetic structure at the origin of acquisition of the beta-lactamase blaKPC gene. Antimicrob Agents Chemother 52:1257–1263. doi:10.1128/AAC.01451-07. PubMed DOI PMC
Papagiannitsis CC, Miriagou V, Giakkoupi P, Tzouvelekis LS, Vatopoulos AC. 2013. Characterization of pKP1780, a novel IncR plasmid from the emerging Klebsiella pneumoniae ST147, encoding the VIM-1 metallo-β-lactamase. J Antimicrob Chemother 68:2259–2262. doi:10.1093/jac/dkt196. PubMed DOI
Miriagou V, Papagiannitsis CC, Kotsakis SD, Loli A, Tzelepi E, Legakis NJ, Tzouvelekis LS. 2010. Sequence of pNL194, a 79.3-kilobase IncN plasmid carrying the blaVIM-1 metallo-β-lactamase gene in Klebsiella pneumoniae. Antimicrob Agents Chemother 54:4497–4502. doi:10.1128/AAC.00665-10. PubMed DOI PMC
Wang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC. 2003. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother 47:2242–2248. doi:10.1128/AAC.47.7.2242-2248.2003. PubMed DOI PMC
Williams LE, Detter C, Barry K, Lapidus A, Summers AO. 2006. Facile recovery of individual high-molecular-weight, low-copy-number natural plasmids for genomic sequencing. Appl Environ Microbiol 72:4899–4906. doi:10.1128/AEM.00354-06. PubMed DOI PMC
Villa L, Carattoli A, Nordmann P, Carta C, Poirel L. 2013. Complete sequence of the IncT-type plasmid pT-OXA-181 carrying the blaOXA-181 carbapenemase gene from Citrobacter freundii. Antimicrob Agents Chemother 57:1965–1957. doi:10.1128/AAC.01297-12. PubMed DOI PMC
Naas T, Bonnin RA, Cuzon G, Villegas MV, Nordmann P. 2013. Complete sequence of two KPC-harbouring plasmids from Pseudomonas aeruginosa. J Antimicrob Chemother 68:1757–1762. doi:10.1093/jac/dkt094. PubMed DOI
Boyd D, Taylor G, Fuller J, Bryce E, Embree J, Gravel D, Katz K, Kibsey P, Kuhn M, Langley J, Mataseje L, Mitchell R, Roscoe D, Simor A, Thomas E, Turgeon N, Mulvey M; Canadian Nosocomial Infection Surveillance Program. 2015. Complete sequence of four multidrug-resistant MOBQ1 plasmids harboring blaGES-5 isolated from Escherichia coli and Serratia marcescens persisting in a hospital in Canada. Microb Drug Resist 21:253–260. doi:10.1089/mdr.2014.0205. PubMed DOI
Frasson I, Lavezzo E, Franchin E, Toppo S, Barzon L, Cavallaro A, Richter SN, Palù G. 2012. Antimicrobial treatment and containment measures for an extremely drug-resistant Klebsiella pneumoniae ST101 isolate carrying pKPN101-IT, a novel fully sequenced blaKPC-2 plasmid. J Clin Microbiol 50:3768–3772. doi:10.1128/JCM.01892-12. PubMed DOI PMC
Papagiannitsis CC, Di Pilato V, Giani T, Giakkoupi P, Riccobono E, Landini G, Miriagou V, Vatopoulos AC, Rossolini GM. 2016. Characterization of KPC-encoding plasmids from two endemic settings, Greece and Italy. J Antimicrob Chemother 71:2824–2830. doi:10.1093/jac/dkw227. PubMed DOI