Substituting Solid Fossil Fuels with Torrefied Timber Products
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022: 11110/1312/3135
Czech University of Life Sciences Prague
PubMed
38138711
PubMed Central
PMC10745029
DOI
10.3390/ma16247569
PII: ma16247569
Knihovny.cz E-zdroje
- Klíčová slova
- biochar, economic analysis, renewable fuels, spruce, torrefaction,
- Publikační typ
- časopisecké články MeSH
As a push towards alternative and renewable resources for heat and power generation, biomass and thermally treated fuels from biomass may be viable options in the upcoming economic reality. This study the verified mass and energy balance of spruce woody biomass after low temperature pyrolysis between 250 and 550 °C. The results showed that low-temperature pyrolysis can yield high-grade biochar suitable for substitution of fossil fuels. Crucially, the net calorific value of biochar processed at 350 °C substantially exceeded that of brown coal. An economic analysis was carried out on the assumption of the current economic reality in the Czech Republic. It was shown that even if the price of the biochar slightly increased, it would still be beneficial to invest in torrefaction technology over paying carbon credits.
Zobrazit více v PubMed
Falup O., Mircea I., Ivan R., Ionel I. Novel Approach for the Current State of Greenhouse Gases Emissions. Romanian Case Study. J. Environ. Prot. Ecol. 2014;15:807–818.
Lee M., Zhang N. Technical Efficiency, Shadow Price of Carbon Dioxide Emissions, and Substitutability for Energy in the Chinese Manufacturing Industries. Energy Econ. 2012;34:1492–1497. doi: 10.1016/j.eneco.2012.06.023. DOI
Lin B., Liu J. Estimating Coal Production Peak and Trends of Coal Imports in China. Energy Policy. 2010;38:512–519. doi: 10.1016/j.enpol.2009.09.042. DOI
Höök M., Zittel W., Schindler J., Aleklett K. Global Coal Production Outlooks Based on a Logistic Model. Fuel. 2010;89:3546–3558. doi: 10.1016/j.fuel.2010.06.013. DOI
Demirbas A. Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues. Prog. Energy Combust. Sci. 2005;31:171–192. doi: 10.1016/j.pecs.2005.02.002. DOI
Goyal H.B., Seal D., Saxena R.C. Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review. Renew. Sustain. Energy Rev. 2008;12:504–517. doi: 10.1016/j.rser.2006.07.014. DOI
Gürdil G.A.K., Selvi K.Ç., Malaták J., Pinar Y. Biomass Utilization for Thermal Energy. AMA Agric. Mech. Asia Afr. Lat. Am. 2009;40:80–85.
Gaunt J.L., Lehmann J. Energy Balance and Emissions Associated with Biochar Sequestration and Pyrolysis Bioenergy Production. Env. Sci. Technol. 2008;42:4152–4158. doi: 10.1021/es071361i. PubMed DOI
Mohan D., Pittman C.U., Steele P.H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels. 2006;20:848–889. doi: 10.1021/ef0502397. DOI
Šafařík D., Hlaváčková P., Michal J. Potential of Forest Biomass Resources for Renewable Energy Production in the Czech Republic. Energies. 2022;15:47. doi: 10.3390/en15010047. DOI
Rečka L., Ščasný M. Brown Coal and Nuclear Energy Deployment: Effects on Fuel-Mix, Carbon Targets, and External Costs in the Czech Republic up to 2050. Fuel. 2018;216:494–502. doi: 10.1016/j.fuel.2017.12.034. DOI
van der Stelt M.J.C., Gerhauser H., Kiel J.H.A., Ptasinski K.J. Biomass Upgrading by Torrefaction for the Production of Biofuels: A Review. Biomass Bioenergy. 2011;35:3748–3762. doi: 10.1016/j.biombioe.2011.06.023. DOI
Chen W.-H., Peng J., Bi X.T. A State-of-the-Art Review of Biomass Torrefaction, Densification and Applications. Renew. Sustain. Energy Rev. 2015;44:847–866. doi: 10.1016/j.rser.2014.12.039. DOI
Kambo H.S., Dutta A. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renew. Sustain. Energy Rev. 2015;45:359–378. doi: 10.1016/j.rser.2015.01.050. DOI
Phanphanich M., Mani S. Impact of Torrefaction on the Grindability and Fuel Characteristics of Forest Biomass. Bioresour. Technol. 2011;102:1246–1253. doi: 10.1016/j.biortech.2010.08.028. PubMed DOI
Tumuluru J.S., Sokhansanj S., Hess J.R., Wright C.T., Boardman R.D. A Review on Biomass Torrefaction Process and Product Properties for Energy Applications. Ind. Biotechnol. 2011;7:384–401. doi: 10.1089/ind.2011.7.384. DOI
Weber K., Quicker P. Properties of Biochar. Fuel. 2018;217:240–261. doi: 10.1016/j.fuel.2017.12.054. DOI
Jha S., Okolie J.A., Nanda S., Dalai A.K. A Review of Biomass Resources and Thermochemical Conversion Technologies. Chem. Eng. Technol. 2022;45:791–799. doi: 10.1002/ceat.202100503. DOI
Schipfer F., Kranzl L. Techno-Economic Evaluation of Biomass-to-End-Use Chains Based on Densified Bioenergy Carriers (DBECs) Appl. Energy. 2019;239:715–724. doi: 10.1016/j.apenergy.2019.01.219. DOI
Starfelt F., Tomas Aparicio E., Li H., Dotzauer E. Integration of Torrefaction in CHP Plants—A Case Study. Energy Convers. Manag. 2015;90:427–435. doi: 10.1016/j.enconman.2014.11.019. DOI
Jeníček L., Tunklová B., Malaťák J., Neškudla M., Velebil J. Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. Materials. 2022;15:6722. doi: 10.3390/ma15196722. PubMed DOI PMC
Chen W.-H., Lin B.-J., Lin Y.-Y., Chu Y.-S., Ubando A.T., Show P.L., Ong H.C., Chang J.-S., Ho S.-H., Culaba A.B., et al. Progress in Biomass Torrefaction: Principles, Applications and Challenges. Prog. Energy Combust. Sci. 2021;82:100887. doi: 10.1016/j.pecs.2020.100887. DOI
Gendek A., Aniszewska M., Owoc D., Tamelová B., Malaťák J., Velebil J., Krilek J. Physico-Mechanical and Energy Properties of Pellets Made from Ground Walnut Shells, Coniferous Tree Cones and Their Mixtures. Renew. Energy. 2023;211:248–258. doi: 10.1016/j.renene.2023.04.122. DOI
Lisowski A., Matkowski P., Dąbrowska M., Piątek M., Świętochowski A., Klonowski J., Mieszkalski L., Reshetiuk V. Particle Size Distribution and Physicochemical Properties of Pellets Made of Straw, Hay, and Their Blends. Waste Biomass Valorization. 2020;11:63–75. doi: 10.1007/s12649-018-0458-8. DOI
Tripathi M., Sahu J.N., Ganesan P. Effect of Process Parameters on Production of Biochar from Biomass Waste through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016;55:467–481. doi: 10.1016/j.rser.2015.10.122. DOI
Wilk M., Magdziarz A., Kalemba I., Gara P. Carbonisation of Wood Residue into Charcoal during Low Temperature Process. Renew. Energy. 2016;85:507–513. doi: 10.1016/j.renene.2015.06.072. DOI
Aniszewska M., Gendek A., Hýsek Š., Malaťák J., Velebil J., Tamelová B. Changes in the Composition and Surface Properties of Torrefied Conifer Cones. Materials. 2020;13:5660. doi: 10.3390/ma13245660. PubMed DOI PMC
Prins M.J., Ptasinski K.J., Janssen F.J.J.G. Torrefaction of Wood: Part 1. Weight Loss Kinetics. J. Anal. Appl. Pyrolysis. 2006;77:28–34. doi: 10.1016/j.jaap.2006.01.002. DOI
Spokas K.A. Review of the Stability of Biochar in Soils: Predictability of O:C Molar Ratios. Carbon. Manag. 2010;1:289–303. doi: 10.4155/cmt.10.32. DOI
Wannapeera J., Fungtammasan B., Worasuwannarak N. Effects of Temperature and Holding Time during Torrefaction on the Pyrolysis Behaviors of Woody Biomass. J. Anal. Appl. Pyrolysis. 2011;92:99–105. doi: 10.1016/j.jaap.2011.04.010. DOI
Thengane S.K., Kung K.S., Gomez-Barea A., Ghoniem A.F. Advances in Biomass Torrefaction: Parameters, Models, Reactors, Applications, Deployment, and Market. Prog. Energy Combust. Sci. 2022;93:101040. doi: 10.1016/j.pecs.2022.101040. DOI
Liu Q., Wang S., Zheng Y., Luo Z., Cen K. Mechanism Study of Wood Lignin Pyrolysis by Using TG–FTIR Analysis. J. Anal. Appl. Pyrolysis. 2008;82:170–177. doi: 10.1016/j.jaap.2008.03.007. DOI
Cha J.S., Park S.H., Jung S.-C., Ryu C., Jeon J.-K., Shin M.-C., Park Y.-K. Production and Utilization of Biochar: A Review. J. Ind. Eng. Chem. 2016;40:1–15. doi: 10.1016/j.jiec.2016.06.002. DOI
Sermyagina E., Saari J., Zakeri B., Kaikko J., Vakkilainen E. Effect of Heat Integration Method and Torrefaction Temperature on the Performance of an Integrated CHP-Torrefaction Plant. Appl. Energy. 2015;149:24–34. doi: 10.1016/j.apenergy.2015.03.102. DOI
Sermyagina E., Saari J., Kaikko J., Vakkilainen E. Integration of Torrefaction and CHP Plant: Operational and Economic Analysis. Appl. Energy. 2016;183:88–99. doi: 10.1016/j.apenergy.2016.08.151. DOI
Meyer S., Glaser B., Quicker P. Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review. Env. Sci. Technol. 2011;45:9473–9483. doi: 10.1021/es201792c. PubMed DOI
Jindo K., Mizumoto H., Sawada Y., Sanchez-Monedero M.A., Sonoki T. Physical and Chemical Characterization of Biochars Derived from Different Agricultural Residues. Biogeosciences. 2014;11:6613–6621. doi: 10.5194/bg-11-6613-2014. DOI
Malaťák J., Gendek A., Aniszewska M., Velebil J. Emissions from Combustion of Renewable Solid Biofuels from Coniferous Tree Cones. Fuel. 2020;276:118001. doi: 10.1016/j.fuel.2020.118001. DOI
Malaťák J., Velebil J., Malaťáková J., Passian L., Bradna J., Tamelová B., Gendek A., Aniszewska M. Reducing Emissions from Combustion of Grape Residues in Mixtures with Herbaceous Biomass. Materials. 2022;15:7288. doi: 10.3390/ma15207288. PubMed DOI PMC
Malaťáková J., Jankovský M., Malaťák J., Velebil J., Tamelová B., Gendek A., Aniszewska M. Evaluation of Small-Scale Gasification for CHP for Wood from Salvage Logging in the Czech Republic. Forests. 2021;12:1448. doi: 10.3390/f12111448. DOI
Peters J.F., Iribarren D., Dufour J. Biomass Pyrolysis for Biochar or Energy Applications? A Life Cycle Assess. 2015;49:5195–5202. doi: 10.1021/ES5060786. PubMed DOI
Ippolito J.A., Laird D.A., Busscher W.J. Environmental Benefits of Biochar. J. Environ. Qual. 2012;41:967–972. doi: 10.2134/jeq2012.0151. PubMed DOI
Červenka J., Bače R., Brůna J., Wild J., Svoboda M., Heurich M. Mapping of Mountain Temperate Forest Recovery after Natural Disturbance: A Large Permanent Plot Established on Czech-German Border. Silva Gabreta. 2019;25:31–41.
Hlásny T., Zimová S., Merganičová K., Štěpánek P., Modlinger R., Turčáni M. Devastating Outbreak of Bark Beetles in the Czech Republic: Drivers, Impacts, and Management Implications. Ecol. Manag. 2021;490:119075. doi: 10.1016/j.foreco.2021.119075. DOI
Purwestri R.C., Hájek M., Hochmalová M., Palátová P., Huertas-Bernal D.C., García-Jácome S.P., Jarský V., Kašpar J., Riedl M., Marušák R. The Role of Bioeconomy in the Czech National Forest Strategy: A Comparison with Sweden. Int. For. Rev. 2022;23:492–510. doi: 10.1505/146554821834777260. DOI
Maitah M., Toth D., Malec K., Appiah-Kubi S.N.K., Maitah K., Pańka D., Prus P., Janků J., Romanowski R. The Impacts of Calamity Logging on the Sustainable Development of Spruce Fuel Biomass Prices and Spruce Pulp Prices in the Czech Republic. Forests. 2022;13:97. doi: 10.3390/f13010097. DOI
Forestry—2021|CZSO. [(accessed on 19 September 2023)]. Available online: https://www.czso.cz/csu/czso/forestry-2021.
Wermelinger B. Ecology and Management of the Spruce Bark Beetle Ips Typographus—A Review of Recent Research. Ecol. Manag. 2004;202:67–82. doi: 10.1016/j.foreco.2004.07.018. DOI
Abdullah H., Darvishzadeh R., Skidmore A.K., Groen T.A., Heurich M. European Spruce Bark Beetle (Ips Typographus, L.) Green Attack Affects Foliar Reflectance and Biochemical Properties. Int. J. Appl. Earth Obs. Geoinf. 2018;64:199–209. doi: 10.1016/j.jag.2017.09.009. DOI
Conner R.C., Johnson T.G. Estimates of Biomass in Logging Residue and Standing Residual Inventory Following Tree-Harvest Activity on Timberland Acres in the Southern Region. US Department of Agriculture, Forest Service, Southern Research Station; Asheville, NC, USA: 2011. pp. 1–32.
Solid Biofuels: Conversion of Analytical Results from One Basis to Another. ISO; Geneva, Switzerland: 2016.
Coal and Coke: Determination of Gross Calorific Value. ISO; Geneva, Switzerland: 2020.
Malaták J., Jevic P., Gürdil G.A.K., Selvi K.Ç. Biomass Heat-Emission Characteristics of Energy Plants. AMA Agric. Mech. Asia Afr. Lat. Am. 2008;39:9–13.
Hupa M., Karlström O., Vainio E. Biomass Combustion Technology Development—It Is All about Chemical Details. Proc. Combust. Inst. 2017;36:113–134. doi: 10.1016/j.proci.2016.06.152. DOI
Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. An Overview of the Chemical Composition of Biomass. Fuel. 2010;89:913–933. doi: 10.1016/j.fuel.2009.10.022. DOI
Nielsen H.P., Frandsen F.J., Dam-Johansen K., Baxter L.L. The Implications of Chlorine-Associated Corrosion on the Operation of Biomass-Fired Boilers. Prog. Energy Combust. Sci. 2000;26:283–298. doi: 10.1016/S0360-1285(00)00003-4. DOI
Juszczak M. Comparison of CO and NOx Concentrations from a 20 KW Boiler for Periodic and Constant Wood Pellet Supply. Environ. Prot. Eng. 2016;42:95–107. doi: 10.37190/epe160308. DOI
Svanberg M., Olofsson I., Flodén J., Nordin A. Analysing Biomass Torrefaction Supply Chain Costs. Bioresour. Technol. 2013;142:287–296. doi: 10.1016/j.biortech.2013.05.048. PubMed DOI
Kloss S., Zehetner F., Dellantonio A., Hamid R., Ottner F., Liedtke V., Schwanninger M., Gerzabek M.H., Soja G. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual. 2012;41:990–1000. doi: 10.2134/jeq2011.0070. PubMed DOI
Jeníček L., Tunklová B., Malaťák J., Velebil J., Malaťáková J., Neškudla M., Hnilička F. The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment. Materials. 2023;16:2074. doi: 10.3390/ma16052074. PubMed DOI PMC
Ingram L., Mohan D., Bricka M., Steele P., Strobel D., Crocker D., Mitchell B., Mohammad J., Cantrell K., Pittman C.U., Jr. Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-Oils. Energy Fuels. 2007;22:614–625. doi: 10.1021/ef700335k. DOI
Jeníček L., Neškudla M., Malaťák J., Velebil J., Passian L. Spruce and Barley Elemental and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technol. Agric. 2021;24:166–172. doi: 10.2478/ata-2021-0028. DOI
Johansson L.S., Tullin C., Leckner B., Sjövall P. Particle Emissions from Biomass Combustion in Small Combustors. Biomass Bioenergy. 2003;25:435–446. doi: 10.1016/S0961-9534(03)00036-9. DOI
Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. An Overview of the Composition and Application of Biomass Ash. Part 1. Phase–Mineral and Chemical Composition and Classification. Fuel. 2013;105:40–76. doi: 10.1016/j.fuel.2012.09.041. DOI
Saidur R., Abdelaziz E.A., Demirbas A., Hossain M.S., Mekhilef S. A Review on Biomass as a Fuel for Boilers. Renew. Sustain. Energy Rev. 2011;15:2262–2289. doi: 10.1016/j.rser.2011.02.015. DOI
Brassard P., Palacios J.H., Godbout S., Bussières D., Lagacé R., Larouche J.-P., Pelletier F. Comparison of the Gaseous and Particulate Matter Emissions from the Combustion of Agricultural and Forest Biomasses. Bioresour. Technol. 2014;155:300–306. doi: 10.1016/j.biortech.2013.12.027. PubMed DOI
Liu H., Zhao B., Zhang X., Zhang Y. Influence of Intrinsic Physicochemical Properties of Agroforestry Waste on Its Pyrolysis Characteristics and Behavior. Materials. 2023;16:222. doi: 10.3390/ma16010222. PubMed DOI PMC
Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Energy Utilization of Torrefied Residue from Wine Production. Materials. 2021;14:1610. doi: 10.3390/ma14071610. PubMed DOI PMC
Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Impact of Torrefaction on Fuel Properties of Aspiration Cleaning Residues. Materials. 2022;15:6949. doi: 10.3390/ma15196949. PubMed DOI PMC
Dupont C., Chiriac R., Gauthier G., Toche F. Heat Capacity Measurements of Various Biomass Types and Pyrolysis Residues. Fuel. 2014;115:644–651. doi: 10.1016/j.fuel.2013.07.086. DOI
Karimi M., Aminzadehsarikhanbeglou E., Vaferi B. Robust Intelligent Topology for Estimation of Heat Capacity of Biochar Pyrolysis Residues. Measurement. 2021;183:109857. doi: 10.1016/j.measurement.2021.109857. DOI
Pereira B.L.C., Carneiro A.D.C.O., Carvalho A.M.M.L., Colodette J.L., Oliveira A.C., Fontes M.P.F. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. Bioresources. 2013;8:4574–4592. doi: 10.15376/biores.8.3.4574-4592. DOI
Tabakaev R., Kanipa I., Astafev A., Dubinin Y., Yazykov N., Zavorin A., Yakovlev V. Thermal Enrichment of Different Types of Biomass by Low-Temperature Pyrolysis. Fuel. 2019;245:29–38. doi: 10.1016/j.fuel.2019.02.049. DOI
Cong H., Mašek O., Zhao L., Yao Z., Meng H., Hu E., Ma T. Slow Pyrolysis Performance and Energy Balance of Corn Stover in Continuous Pyrolysis-Based Poly-Generation Systems. Energy Fuels. 2018;32:3743–3750. doi: 10.1021/acs.energyfuels.7b03175. DOI
Van Loo S., Koppejan J. The Handbook of Biomass Combustion and Co-Firing. Taylor and Francis; Abingdon, UK: 2012. pp. 1–442. DOI
NERA Economic Consulting . Economic Assessment of Biomass Conversion. World Bank; Berlin, Germany: 2021.
Abelha P., Kiel J. Techno-Economic Assessment of Biomass Upgrading by Washing and Torrefaction. Biomass Bioenergy. 2020;142:105751. doi: 10.1016/j.biombioe.2020.105751. DOI
Doddapaneni T.R.K.C., Praveenkumar R., Tolvanen H., Rintala J., Konttinen J. Techno-Economic Evaluation of Integrating Torrefaction with Anaerobic Digestion. Appl. Energy. 2018;213:272–284. doi: 10.1016/j.apenergy.2018.01.045. DOI
Manouchehrinejad M., Bilek E.M.T., Mani S. Techno-Economic Analysis of Integrated Torrefaction and Pelletization Systems to Produce Torrefied Wood Pellets. Renew. Energy. 2021;178:483–493. doi: 10.1016/j.renene.2021.06.064. DOI
Peng J.H., Bi H.T., Sokhansanj S., Lim J.C., Melin S. An Economical and Market Analysis of Canadian Wood Pellets. Int. J. Green. Energy. 2010;7:128–142. doi: 10.1080/15435071003673518. DOI
Pyrolyzed Agro-Food By-Products: A Sustainable Alternative to Coal