Energy Utilization of Torrefied Residue from Wine Production
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2019:31170/1312/3121
Česká Zemědělská Univerzita v Praze
2020:31170/1312/3112
Česká Zemědělská Univerzita v Praze
PubMed
33806159
PubMed Central
PMC8037500
DOI
10.3390/ma14071610
PII: ma14071610
Knihovny.cz E-resources
- Keywords
- biochar, bioenergy, elemental analysis, energy properties, torrefaction,
- Publication type
- Journal Article MeSH
A significant amount of waste is generated in the food industry, which is both an environmental and an economic problem. The recycling of this waste has become an important area of research. The processing of grapes produces 20-30% of the waste in the form of grape pomace and stalks. This article assesses the fuel values of these materials before and after torrefaction. The input materials were grape pomace samples from the varieties Riesling (Vitis vinifera "Welschriesling") and Cabernet Sauvignon (Vitis vinifera "Cabernet Sauvignon") from the South Moravia region and stalks from the variety Welschriesling. The torrefaction process was performed using a LECO TGA 701 thermogravimetric analyzer under nitrogen atmosphere at set temperatures of 225 °C, 250 °C, and 275 °C. The residence time was 30 min. Elemental analysis, calorific value, and gross calorific value were determined for all samples. The analyses show a positive effect of torrefaction on fuel properties in the samples. Between temperatures 250 °C and 275 °C, the carbon content increased by 4.29 wt.%, and the calorific value increased with the increase in temperature reaching a value of 25.84 MJ·kg-1 at a peak temperature of 275 °C in the sample grape pomace from blue grapevine.
See more in PubMed
Alburquerque J.A., Sánchez M.E., Mora M., Barrón V. Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 2. Char characterisation for carbon sequestration and agricultural uses. J. Clean. Prod. 2016;120:191–197. doi: 10.1016/j.jclepro.2014.10.080. DOI
Beres C., Costa G.N.S., Cabezudo I., da Silva-James N.K., Teles A.S.C., Cruz A.P.G., Mellinger Silva C., Tonon R.V., Cabral L.M.C., Freitas S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017;68:581–594. doi: 10.1016/j.wasman.2017.07.017. PubMed DOI
Scoma A., Rebecchi S., Bertin L., Fava F. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries. Crit. Rev. Biotechnol. 2014;36:175–189. doi: 10.3109/07388551.2014.947238. PubMed DOI
Spigno G., Maggi L., Amendola D., Dragoni M., De Faveri D.M. Influence of cultivar on the lignocellulosic fractionation of grape stalks. Ind. Crop. Prod. 2013;46:283–289. doi: 10.1016/j.indcrop.2013.01.034. DOI
Beres C., Simas-Tosin F.F., Cabezudo I., Freitas S.P., Iacomini M., Mellinger-Silva C., Cabral L.M.C. Antioxidant dietary fibre recovery from Brazilian Pinot noir grape pomace. Food Chem. 2016;201:145–152. doi: 10.1016/j.foodchem.2016.01.039. PubMed DOI
Pala M., Kantarli I.C., Buyukisik H.B., Yanik J. Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour. Technol. 2014;161:255–262. doi: 10.1016/j.biortech.2014.03.052. PubMed DOI
Riazi F., Zeynali F., Hoseini E., Behmadi H., Savadkoohi S. Oxidation phenomena and color properties of grape pomace on nitrite-reduced meat emulsion systems. Meat Sci. 2016;121:350–358. doi: 10.1016/j.meatsci.2016.07.008. PubMed DOI
Yu J., Ahmedna M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013;48:221–237. doi: 10.1111/j.1365-2621.2012.03197.x. DOI
Dwyer K., Hosseinian F., Rod M. The market potential of grape waste alternatives. J. Food Res. 2014;3:91–106. doi: 10.5539/jfr.v3n2p91. DOI
Fontana A.R., Antoniolli A., Bottini R. Grape pomace as a sustainable source of bioactive compounds: Extraction characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 2013;61:8987–9003. doi: 10.1021/jf402586f. PubMed DOI
Muhlack R.A., Potumarthi R., Jeffery D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018;72:99–118. doi: 10.1016/j.wasman.2017.11.011. PubMed DOI
Mayr Marangon C., De Rosso M., Carraro R., Flamini R. Changes in volatile compounds of grape pomace distillate (Italian grappa) during one-year ageing in oak and cherry barrels. Food Chem. 2021;344:128658. doi: 10.1016/j.foodchem.2020.128658. PubMed DOI
Da Porto C. Grappa: Production, sensory properties and market development. Alcohol. Beverages: Sens. Eval. Consum. Res. 2011:299–314. doi: 10.1533/9780857095176.3.299. DOI
Hixson J.L., Jacobs J.L., Wilkes E.N., Smith P.A. Survey of the Variation in Grape Marc Condensed Tannin Composition and Concentration and Analysis of Key Compositional Factors. J. Agric. Food Chem. 2016;64:7076–7086. doi: 10.1021/acs.jafc.6b03126. PubMed DOI
Pinelo M., Arnous A., Meyer A.S. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci. Technol. 2006;17:579–590. doi: 10.1016/j.tifs.2006.05.003. DOI
Paradelo R., Moldes A.B., Barral M.T. Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes. J. Environ. Manag. 2013;116:18–26. doi: 10.1016/j.jenvman.2012.12.001. PubMed DOI
Greenwood S.L., Edwards G.R., Harrison R. Short communication: Supplementing grape marc to cows fed a pasture-based diet as a method to alter nitrogen partitioning and excretion. J. Dairy Sci. 2012;95:755–758. doi: 10.3168/jds.2011-4648. PubMed DOI
Botelho T., Costa M., Wilk M., Magdziarz A. Evaluation of the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace. Fuel. 2018;12:95–100. doi: 10.1016/j.fuel.2017.09.118. DOI
Encinar J.M., Beltrán F.J., Bernalte A., Ramiro A., González J.F. Pyrolysis of two agricultural residues: Olive and grape bagasse. Influence of particle size and temperature. Biomass Bioenergy. 1996;11:397–409. doi: 10.1016/S0961-9534(96)00029-3. DOI
Lapuerta M., Hernández J.J., Pazo A., López J. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions. Fuel Process. Technol. 2008;89:828–837. doi: 10.1016/j.fuproc.2008.02.001. DOI
Miranda M.T., Arranz J.I., Román S., Montero I., López M., Cruz J.A. Characterization of grape pomace and pyrenean oak pellets. Fuel Process. Technol. 2011;92:278–283. doi: 10.1016/j.fuproc.2010.05.035. DOI
Czech Statistical Office (2021) Trends Areas, Per Hectare Yields Harvest. Crop.—1.1. 2021. [(accessed on 7 March 2021)]. Available online: https://vdb.czso.cz/vdbvo2/faces/en/index.jsf?page=vystup-objekt&pvo=ZEM02G&z=T&f=TABULKA&skupId=386&katalog=30840&pvo=ZEM02G&evo=v1442_!_ZEM02G-celek_1.
García-Pérez J.V., Blasco M., Cárcel J.A., Clemente G., Mulet A. Drying kinetics of grape stalk. Defect Diffus. Forum. 2006;258–260:225–230. doi: 10.4028/www.scientific.net/DDF.258-260.225. DOI
Deiana A.C., Sardella M.F., Silva H., Amaya A., Tancredi N. Use of grape stalk, a waste of the viticulture industry, to obtain activated carbon. J. Hazard. Mater. 2009;172:13–19. doi: 10.1016/j.jhazmat.2009.06.095. PubMed DOI
Ping L., Brosse N., Sannigrahi P., Ragauskas A. Evaluation of grape stalks as a bioresource. Ind. Crop. Prod. 2011;33:200–204. doi: 10.1016/j.indcrop.2010.10.009. DOI
Pujol D., Liu C., Fiol N., Olivella À.M., Gominho J., Villaescusa I., Pereira H. Chemical characterization of different granulometric fractions of grape stalks waste. Ind. Crop. Prod. 2013;50:494–500. doi: 10.1016/j.indcrop.2013.07.051. DOI
Malaťak J., Gürdil G.A.K., Jevic P., Selvi K.Ç. Biomass heat-emission characteristics of energy plants. Ama-Agric. Mech. Asia Afr. Lat. Am. 2009;39:9–13.
Nguyen T.L.T., Hermansen J.E., Nielsen R.G. Environmental assessment of gasification technology for biomass conversion to energy in comparison with other alternatives: The case of wheat straw. J. Clean. Prod. 2013;53:138–148. doi: 10.1016/j.jclepro.2013.04.004. DOI
Gendek A., Aniszewska M., Malaťák J., Velebil J. Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass Bioenergy. 2018;117:173–179. doi: 10.1016/j.biombioe.2018.07.025. DOI
Gürdil G.A.K., Demirel B. Effect of particle size on surface smoothness of bio-briquettes produced from agricultural residues. Manuf. Technol. 2018;18:742–747. doi: 10.21062/ujep/170.2018/a/1213-2489/MT/18/5/742. DOI
Ivanova T., Mendoza Hernández A.H., Bradna J., Fernández Cusimamani E., García Montoya J.C., Armas Espinel D.A. Assessment of Guava (Psidium guajava L.) Wood Biomass for Briquettes’ Production. Forests. 2018;9:613. doi: 10.3390/f9100613. DOI
Wróbel M., Jewiarz M., Mudryk K., Knapczyk A. Influence of Raw Material Drying Temperature on the Scots Pine (Pinus sylvestris L.) Biomass Agglomeration Process-A Preliminary Study. Energies. 2020;13:1809. doi: 10.3390/en13071809. DOI
Kučerová V., Vybohova E., Honig V., Cabalova i. Chemical Changes within Solids during Liquid Hot Water Pretreatment of Wood. Bioresources. 2020;15:38–48. doi: 10.15376/biores.15.1.38-48. DOI
Correia R., Gonçalves M., Nobre C., Mendes B. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis. Bioresour. Technol. 2017;223:210–218. doi: 10.1016/j.biortech.2016.10.046. PubMed DOI
Keipi T., Tolvanen H., Kokko L., Raiko R. The effect of torrefaction on the chlorine content and heating value of eight woody biomass samples. Biomass Bioenergy. 2014;66:232–239. doi: 10.1016/j.biombioe.2014.02.015. DOI
Lee S.M., Lee J.-W. Optimization of biomass torrefaction conditions by the Gain and Loss method and regression model analysis. Bioresour. Technol. 2014;172:438–443. doi: 10.1016/j.biortech.2014.09.016. PubMed DOI
Wannapeera J., Worasuwannarak N. Upgrading of woody biomass by torrefaction under pressure. J. Anal. Appl. Pyrolysis. 2012;96:173–180. doi: 10.1016/j.jaap.2012.04.002. DOI
Chen W.-H., Peng J., Bi X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015;44:847–866. doi: 10.1016/j.rser.2014.12.039. DOI
Cahyanti M.N., Doddapaneni T.R.K.C., Kikas T. Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresour. Technol. 2020;301:122737. doi: 10.1016/j.biortech.2020.122737. PubMed DOI
Bridgeman T.G., Jones J.M., Shield I., Williams P.T. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel. 2008;87:844–856. doi: 10.1016/j.fuel.2007.05.041. DOI
Mikušová L., Očkajová A., Dado M., Kučera M., Danihelová Z. Thermal treatment’s effect on dust emission during sanding of meranti wood. BioResources. 2019;14:5316–5326.
Novák V., Křížová K., Šařec P. Biochar dosage impact on physical soil properties and crop status. Agron. Res. 2020;18:2501–2511. doi: 10.15159/AR.20.192. DOI
Wang J., Wang S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019;227:1002–1022. doi: 10.1016/j.jclepro.2019.04.282. DOI
Wilk M., Magdziarz A., Kalemba I. Characterisation of renewable fuels’ torrefaction process with different instrumental techniques. Energy. 2015;87:259–269. doi: 10.1016/j.energy.2015.04.073. DOI
Zhao B., O’Connor D., Zhang J., Peng T., Sheng Z., Tsang D.C.W., Hou D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018;174:977–987. doi: 10.1016/j.jclepro.2017.11.013. DOI
Chen W.-H., Lu K.-M., Tsai C.-M. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl. Energy. 2012;100:318–325. doi: 10.1016/j.apenergy.2012.05.056. DOI
Tamelová B., Malaťák J., Velebil J. Hydrothermal carbonization and torrefaction of cabbage waste. Agron. Res. 2019;17:862–871. doi: 10.15159/ar.19.098. DOI
González-Centeno M.R., Rosselló C., Simal S., Garau M.C., López F., Femenia A. Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: Grape pomaces and stems. LWT Food Sci. Technol. 2010;43:1580–1586. doi: 10.1016/j.lwt.2010.06.024. DOI
Prins M.J., Ptasinski K.J., Janssen F.J.J.G. Torrefaction of wood. Part 2. Analysis of products. J. Anal. Appl. Pyrolysis. 2006;77:35–40. doi: 10.1016/j.jaap.2006.01.001. DOI
Chiou B.S., Valenzuela-Medina D., Bilbao-Sainz C., Klamczynski A.K., Avena-Bustillos R.J., Milczarek R.R., Du W.X., Glenn G.M., Orts W.J. Torrefaction of pomaces and nut shells. Bioresour. Technol. 2015;177:58–65. doi: 10.1016/j.biortech.2014.11.071. PubMed DOI
Burg P., Ludín D., Rutkowski K., Krakowiak-Bal A., Trávníček P., Zemánek P., Turan J., Višacki V. Calorific evaluation and energy potential of grape pomace. Int. Agrophysics. 2016;30:261–265. doi: 10.1515/intag-2015-0082. DOI
Chen D., Zheng Z., Fu K., Zeng Z., Wang J., Lu M. Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products. Fuel. 2015;159:27–32. doi: 10.1016/j.fuel.2015.06.078. DOI
Tamelová B., Malaťák J., Velebil J. Energy valorisation of citrus peel waste by torrefaction treatment. Agron. Res. 2018;16:276–285. doi: 10.15159/ar.18.029. DOI
Díaz-Ramiréz M., Sebastián F., Royo J., Rezeau A. Influencing factors on NOX emission level during grate conversion of three pelletized energy crops. Appl. Energy. 2014;115:360–373. doi: 10.1016/j.apenergy.2013.11.011. DOI
Kažimírová V., Opáth R. Biomass combustion emissions. Res. Agric. Eng. 2016;62:61–65. doi: 10.17221/69/2015-RAE. DOI
Malaťák J., Gendek A., Aniszewska M., Velebil J. Emissions from combustion of renewable solid biofuels from coniferous tree cones. Fuel. 2020;276:118001. doi: 10.1016/j.fuel.2020.118001. DOI
Abelha P., Kiel J. Techno-economic assessment of biomass upgrading by washing and torrefaction. Biomass Bioenergy. 2020;142:105751. doi: 10.1016/j.biombioe.2020.105751. DOI
Sermyagina E., Saari J., Kaikko J., Vakkilainen E. Integration of torrefaction and CHP plant: Operational and economic analysis. Appl. Energy. 2016;183:88–99. doi: 10.1016/j.apenergy.2016.08.151. DOI
Akbari M., Oyedun A.O., Kumar A. Techno-economic assessment of wet and dry torrefaction of biomass feedstock. Energy. 2020;207:118287. doi: 10.1016/j.energy.2020.118287. DOI
Substituting Solid Fossil Fuels with Torrefied Timber Products
The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment
Reducing Emissions from Combustion of Grape Residues in Mixtures with Herbaceous Biomass
Impact of Torrefaction on Fuel Properties of Aspiration Cleaning Residues
Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment