Reducing Emissions from Combustion of Grape Residues in Mixtures with Herbaceous Biomass
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2019:31170/1312/3121
Czech University of Life Sciences Prague
2020:31170/1312/3112
Czech University of Life Sciences Prague
PubMed
36295353
PubMed Central
PMC9609673
DOI
10.3390/ma15207288
PII: ma15207288
Knihovny.cz E-resources
- Keywords
- Miscanthus sinensis, carbon monoxide, combustion test, excess air co-efficient, grape pomace, nitrogen oxides, stems,
- Publication type
- Journal Article MeSH
The use of grape residues as a renewable energy source for combustion presents various problems. One of these is the excessive production of carbon monoxide and nitrogen oxides. Analyses and combustion tests were performed on white and red grape pomace as well as grape stems. To verify the possibility of a reduction in emissions, straw of Miscanthus sinensis was added to mixtures with red grape pomace. Emission concentrations of carbon monoxide and nitrogen oxides were determined on a grate combustion device with a nominal thermal output of 8 kW under steady-state conditions. In addition to these emission concentrations, the excess air factor and the flue gas temperature were monitored. The results show a high energy content in grape residues. In red grape pomace, the gross calorific value of dry matter reached 22.17 MJ kg-1. Unfavourable properties included high ash and nitrogen contents. During combustion tests on all types of grape residue, the emission concentrations of carbon monoxide were above the legal limit for the combustion of solid fuels. The addition of Miscanthus straw improved the behaviour during combustion. The maximum content of grape pomace in the mixture capable of meeting legislative emission requirements was 50% wt.
See more in PubMed
Saidur R., Abdelaziz E.A., Demirbas A., Hossain M.S., Mekhilef S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011;15:2262–2289. doi: 10.1016/j.rser.2011.02.015. DOI
Scoma A., Rebecchi S., Bertin L., Fava F. High impact biowastes from South European agro-industries as feedstock for second-generation biorefineries. Crit. Rev. Biotechnol. 2016;36:175–189. doi: 10.3109/07388551.2014.947238. PubMed DOI
Beres C., Costa G.N.S., Cabezudo I., da Silva-James N.K., Teles A.S.C., Cruz A.P.G., Mellinger-Silva C., Tonon R.V., Cabral L.M.C., Freitas S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017;68:581–594. doi: 10.1016/j.wasman.2017.07.017. PubMed DOI
Spigno G., Maggi L., Amendola D., Dragoni M., De Faveri D.M. Influence of cultivar on the lignocellulosic fractionation of grape stalks. Ind. Crop. Prod. 2013;46:283–289. doi: 10.1016/j.indcrop.2013.01.034. DOI
Chowdhary P., Gupta A., Gnansounou E., Pandey A., Chaturvedi P. Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition. Environ. Pollut. 2021;278:116796. doi: 10.1016/j.envpol.2021.116796. PubMed DOI
Spinei M., Oroian M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods. 2021;10:867. doi: 10.3390/foods10040867. PubMed DOI PMC
Beres C., Simas-Tosin F.F., Cabezudo I., Freitas S.P., Iacomini M., Mellinger-Silva C., Cabral L.M.C. Antioxidant dietary fibre recovery from Brazilian Pinot noir grape pomace. Food Chem. 2016;201:145–152. doi: 10.1016/j.foodchem.2016.01.039. PubMed DOI
Riazi F., Zeynali F., Hoseini E., Behmadi H., Savadkoohi S. Oxidation phenomena and color properties of grape pomace on nitrite-reduced meat emulsion systems. Meat Sci. 2016;121:350–358. doi: 10.1016/j.meatsci.2016.07.008. PubMed DOI
Yu J., Ahmedna M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013;48:221–237. doi: 10.1111/j.1365-2621.2012.03197.x. DOI
Balli D., Cecchi L., Innocenti M., Bellumori M., Mulinacci N. Food by-products valorisation: Grape pomace and olive pomace (pâté) as sources of phenolic compounds and fiber for enrichment of tagliatelle pasta. Food Chem. 2021;355:129642. doi: 10.1016/j.foodchem.2021.129642. PubMed DOI
Pala M., Kantarli I.C., Buyukisik H.B., Yanik J. Hydrothermal carbonization and torrefaction of grape pomace: A comparative evaluation. Bioresour. Technol. 2014;161:255–262. doi: 10.1016/j.biortech.2014.03.052. PubMed DOI
Botelho T., Costa M., Wilk M., Magdziarz A. Evaluation of the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace. Fuel. 2018;212:95–100. doi: 10.1016/j.fuel.2017.09.118. DOI
Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Energy utilization of torrefied residue from wine production. Materials. 2021;14:1610. doi: 10.3390/ma14071610. PubMed DOI PMC
Encinar J.M., Beltrán F.J., Bernalte A., Ramiro A., González J.F. Pyrolysis of two agricultural residues: Olive and grape bagasse. Influence of particle size and temperature. Biomass Bioenergy. 1996;11:397–409. doi: 10.1016/S0961-9534(96)00029-3. DOI
Lapuerta M., Hernández J.J., Pazo A., López J. Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions. Fuel Process. Technol. 2008;89:828–837. doi: 10.1016/j.fuproc.2008.02.001. DOI
Miranda M.T., Arranz J.I., Román S., Rojas S., Montero I., López M., Cruz J.A. Characterization of grape pomace and pyrenean oak pellets. Fuel Process. Technol. 2011;92:278–283. doi: 10.1016/j.fuproc.2010.05.035. DOI
García-Pérez J.V., Blasco M., Cárcel J.A., Clemente G., Mulet A. Drying Kinetics of Grape Stalk. Defect Diffus. Forum. 2006;258–260:225–230. doi: 10.4028/WWW.SCIENTIFIC.NET/DDF.258-260.225. DOI
Deiana A.C., Sardella M.F., Silva H., Amaya A., Tancredi N. Use of grape stalk, a waste of the viticulture industry, to obtain activated carbon. J. Hazard. Mater. 2009;172:13–19. doi: 10.1016/j.jhazmat.2009.06.095. PubMed DOI
Pujol D., Liu C., Fiol N., Olivella M.À., Gominho J., Villaescusa I., Pereira H. Chemical characterization of different granulometric fractions of grape stalks waste. Ind. Crop. Prod. 2013;50:494–500. doi: 10.1016/j.indcrop.2013.07.051. DOI
Gil M.V., Oulego P., Casal M.D., Pevida C., Pis J.J., Rubiera F. Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour. Technol. 2010;101:8859–8867. doi: 10.1016/j.biortech.2010.06.062. PubMed DOI
Gendek A., Aniszewska M., Malaťák J., Velebil J. Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass Bioenergy. 2018;117:173–179. doi: 10.1016/j.biombioe.2018.07.025. DOI
Miranda T., Arranz J.I., Montero I., Román S., Rojas C.V., Nogales S. Characterization and combustion of olive pomace and forest residue pellets. Fuel Process. Technol. 2012;103:91–96. doi: 10.1016/j.fuproc.2011.10.016. DOI
Brunerová A., Brožek M., Müller M. Utilization of waste biomass from post–harvest lines in the form of briquettes for energy production. Agron. Res. 2017;15:344–358.
Hnilička F., Hniličková H., Hejnák V. Use of combustion methods for calorimetry in the applied physiology of plants. J. Therm. Anal. Calorim. 2014;120:411–417. doi: 10.1007/s10973-014-3716-4. DOI
Malaťák J., Jevic P., Gürdil G.A.K., Selvi K.Ç. Biomass heat-emission characteristics of energy plants. AMA Agric. Mech. Asia Afr. Lat. Am. 2008;39:9–13.
Hnilička F., Hniličková H., Kudrna J., Kraus K., Kukla J., Kuklová M. Combustion calorimetry and its application in the assessment of ecosystems. J. Therm. Anal. Calorim. 2020;142:771–781. doi: 10.1007/s10973-020-09961-9. DOI
Kučerová V., Výbohová E., Čaňová I., Ďurkovič J. The effects of both insoluble lignin and the macromolecular traits of cellulose on the content of saccharides within solids during hydrothermal pretreatment of hybrid poplar wood. Ind. Crop. Prod. 2016;91:22–31. doi: 10.1016/j.indcrop.2016.06.021. DOI
Kučerová V., Výbohová E. Release of saccharides during hot-water pretreatment of willow wood (Salix alba L.) Cellul. Chem. Technol. 2018;52:381–386.
Commission Regulation (EU) 2015/1185 of 24 April 2015 Implementing Directive 2009/125/EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Solid Fuel Local Space Heaters. European Union. 2015. [(accessed on 7 November 2021)]. Available online: http://data.europa.eu/eli/reg/2015/1185/2017-01-09.
Malaťák J., Passian L. Heat-emission analysis of small combustion equipments for biomass. Res. Agric. Eng. 2011;57:37–50. doi: 10.17221/28/2010-RAE. DOI
Souček J., Jasinskas A. Assessment of the use of potatoes as a binder in flax heating pellets. Sustainability. 2020;12:10481. doi: 10.3390/su122410481. DOI
Wang K., Nakao S., Thimmaiah D., Hopke P.K. Emissions from in-use residential wood pellet boilers and potential emissions savings using thermal storage. Sci. Total Environ. 2019;676:564–576. doi: 10.1016/j.scitotenv.2019.04.325. PubMed DOI
Zosima A., Ochsenkuhn-Petropoulou M. Particulate matter emissions from combustion of different types of wood pellet. Fresenius Environ. Bull. 2015;24:146–156.
Win K.M., Persson T., Bales C. Particles and gaseous emissions from realistic operation of residential wood pellet heating systems. Atmos. Environ. 2012;59:320–327. doi: 10.1016/j.atmosenv.2012.05.016. DOI
Winter F., Wartha C., Hofbauer H. NO and N2O formation during the combustion of wood, straw, malt waste and peat. Bioresour. Technol. 1999;70:39–49. doi: 10.1016/S0960-8524(99)00019-X. DOI
Johansson L.S., Leckner B., Gustavsson L., Cooper D., Tullin C., Potter A. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos. Environ. 2004;38:4183–4195. doi: 10.1016/j.atmosenv.2004.04.020. DOI
Juszczak M. Comparison of CO and NOx concentrations from a 20 kW boiler for periodic and constant wood pellet supply. Environ. Prot. Eng. 2016;42:95–107. doi: 10.37190/epe160308. DOI
Malaťák J., Bradna J., Velebil J. The dependence of COx and NOx emission concentrations on the excess air coefficient during combustion of selected agricultural briquetted by-products. Agron. Res. 2017;15:1084–1093.
Díaz-Ramírez M., Sebastián F., Royo J., Rezeau A. Influencing factors on NOX emission level during grate conversion of three pelletized energy crops. Appl. Energy. 2014;115:360–373. doi: 10.1016/j.apenergy.2013.11.011. DOI
Solid biofuels—Determination of Moisture Content—Oven Dry Method Part 3: Moisture in General Analysis Sample. International Organization for Standardization; Geneva, Switzerland: 2015. p. 5.
Solid Biofuels—Determination of Ash Content. International Organization for Standardization; Geneva, Switzerland: 2015. p. 6.
Coal and Coke—Determination of Gross Calorific Value. International Organization for Standardization; Geneva, Switzerland: 2020. p. 62.
Solid Biofuels—Conversion of Analytical Results from One Basis to Another. International Organization for Standardization; Geneva, Switzerland: 2016. p. 10.
Toscano G., Riva G., Duca D., Pedretti E.F., Corinaldesi F., Rossini G. Analysis of the characteristics of the residues of the wine production chain finalized to their industrial and energy recovery. Biomass Bioenergy. 2013;55:260–267. doi: 10.1016/j.biombioe.2013.02.015. DOI
Solid Biofuels—Fuel Specifications and Classes—Part 3: Graded Wood Briquettes. International Organization for Standardization; Geneva, Switzerland: 2021. p. 16.
Bradna J., Malaťák J., Velebil J. Impact of differences in combustion conditions of rape straw on the amount of flue gases and fly ash properties. Agron. Res. 2017;15:649–657.
Bradna J., Malaťák J., Hájek D. The properties of wheat straw combustion and use of fly ash as a soil amendment. Agron. Res. 2016;14:1257–1265.
Vaštík L., Mašán V., Burg P., Sikora J. Energy recovery of waste from the vineyard and winery; Proceedings of the TAE 2019—Proceeding of 7th International Conference on Trends in Agricultural Engineering; Prague, Czech Republic. 17–20 September 2019; pp. 568–572.
Malaťák J., Gendek A., Aniszewska M., Velebil J. Emissions from combustion of renewable solid biofuels from coniferous tree cones. Fuel. 2020;276:118001. doi: 10.1016/j.fuel.2020.118001. DOI
Bożym M., Gendek A., Siemiątkowski G., Aniszewska M., Malaťák J. Assessment of the Composition of Forest Waste in Terms of Its Further Use. Materials. 2021;14:973. doi: 10.3390/ma14040973. PubMed DOI PMC
Gündüz G., Saraçoğlu N., Aydemir D. Characterization and elemental analysis of wood pellets obtained from low-valued types of wood. Energy Sources Part A Recover. Util. Environ. Eff. 2016;38:2211–2216. doi: 10.1080/15567036.2015.1040900. DOI
Piętka J., Gendek A., Malaťák J., Velebil J., Moskalik T. Effects of selected white-rot fungi on the calorific value of beech wood (Fagus sylvatica L.) Biomass Bioenergy. 2019;127:105290. doi: 10.1016/j.biombioe.2019.105290. DOI
Ferus P., Hnilička F., Hniličková H., Kurjak D., Kmeť J., Otepka P., Gubiš J., Havrlentová M., Malbeck J., Konôpková J. Productivity and heat-stress tolerance in Canadian poplar (Populus × canadensis Moench) clones with different ecological optimum. Biomass Bioenergy. 2020;138:105605. doi: 10.1016/j.biombioe.2020.105605. DOI
Bilandžija D., Bilandžija N., Zgorelec Ž. Sequestration potential of energy crop Miscanthus x giganteus cultivated in continental part of Croatia. J. Cent. Eur. Agric. 2021;22:188–200. doi: 10.5513/JCEA01/22.1.2776. DOI
Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G. An overview of the chemical composition of biomass. Fuel. 2010;89:913–933. doi: 10.1016/j.fuel.2009.10.022. DOI
Klauser F., Carlon E., Kistler M., Schmidl C., Schwabl M., Sturmlechner R., Haslinger W., Kasper-Giebl A. Emission characterization of modern wood stoves under real-life oriented operating conditions. Atmos. Environ. 2018;192:257–266. doi: 10.1016/j.atmosenv.2018.08.024. DOI
Malaták J., Velebil J., Bradna J., Gendek A., Tamelová B. Evaluation of Co and Nox Emissions in Real-Life Operating Conditions of Herbaceous Biomass Briquettes Combustion. Acta Technol. Agric. 2020;23:53–59. doi: 10.2478/ata-2020-0009. DOI
Eskilsson D., Rönnbäck M., Samuelsson J., Tullin C. Optimisation of efficiency and emissions in pellet burners. Biomass Bioenergy. 2004;27:541–546. doi: 10.1016/j.biombioe.2003.09.008. DOI
Zhou H., Li Y., Li N., Qiu R., Meng S., Cen K. Experimental study of the NO and N2O emissions during devolatilization and char combustion of a single biomass particle in O2/N2 and O2/H2O under low temperature condition. Fuel. 2017;206:162–170. doi: 10.1016/j.fuel.2017.05.089. DOI
Houshfar E., Løvås T., Skreiberg Ø. Experimental investigation on NOx reduction by primary measures in biomass combustion: Straw, peat, sewage sludge, forest residues and wood pellets. Energies. 2012;5:270–290. doi: 10.3390/en5020270. DOI
Malaťák J., Bradna J. Use of waste material mixtures for energy purposes in small combustion devices. Res. Agric. Eng. 2014;60:50–59. doi: 10.17221/78/2012-RAE. DOI
Chandrasekaran S.R., Hopke P.K., Newtown M., Hurlbut A. Residential-scale biomass boiler emissions and efficiency characterization for several fuels. Energy Fuels. 2013;27:4840–4849. doi: 10.1021/ef400891r. DOI
Liu H., Chaney J., Li J., Sun C. Control of NOx emissions of a domestic/small-scale biomass pellet boiler by air staging. Fuel. 2013;103:792–798. doi: 10.1016/j.fuel.2012.10.028. DOI
Malaťák J., Bradna J., Velebil J., Gendek A., Ivanova T. Evaluation of dried compost for energy use via co-combustion with wood. Agron. Res. 2018;16:157–166. doi: 10.15159/AR.18.022. DOI
Ball A.S., Shahsavari E., Aburto-Medina A., Kadali K.K., Shaiban A.A.J., Stewart R.J. Biostabilization of municipal solid waste fractions from an Advanced Waste Treatment plant. J. King Saud Univ.-Sci. 2017;29:145–150. doi: 10.1016/j.jksus.2016.10.005. DOI
Yang Y.B., Yamauchi H., Nasserzadeh V., Swithenbank J. Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed☆. Fuel. 2003;82:2205–2221. doi: 10.1016/S0016-2361(03)00145-5. DOI
Warnatz J., Maas U., Dibble R.W. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer; Berlin/Heidelberg, Germany: 2006.
Bradna J., Malaťák J. Flue gases thermal emission concentration during waste biomass combustion in small combustion device with manual fuel supply. Res. Agric. Eng. 2016;62:1–8. doi: 10.17221/36/2014-RAE. DOI
Garcia-Maraver A., Zamorano M., Fernandes U., Rabaçal M., Costa M. Relationship between fuel quality and gaseous and particulate matter emissions in a domestic pellet-fired boiler. Fuel. 2014;119:141–152. doi: 10.1016/j.fuel.2013.11.037. DOI
Substituting Solid Fossil Fuels with Torrefied Timber Products
The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment