Metallothionein modulation in relation to cadmium bioaccumulation and age-dependent sensitivity of Chironomus riparius larvae

. 2016 Jun ; 23 (11) : 10504-10513. [epub] 20160309

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26957427
Odkazy

PubMed 26957427
DOI 10.1007/s11356-016-6362-5
PII: 10.1007/s11356-016-6362-5
Knihovny.cz E-zdroje

The goal of this study was to contribute to understanding of the mechanisms behind sensitivity differences between early and late instar larvae of Chironomus riparius and to address the influence of the differences in standard testing approaches on the toxicity evaluation. A 10-day contact sediment toxicity test was carried out to assess sensitivity to cadmium exposure in relation to different age and laboratory culture line origin of test organisms. Chironomid larvae of early (OECD 218 method) and late instar (US-EPA600/R-99/064 method) differed substantially in sensitivity of traditional endpoints (OECD: LOEC 50 and 10 μg Cd/g dry weight (dw); US-EPA: LOEC > 1000 and 100 μg Cd/g dw for survival and growth, respectively). Bioaccumulated cadmium and metallothioneins (MTs) concentrations were analyzed to investigate the role of MTs in reduced sensitivity to cadmium in late instar larvae. Metallothioneins were induced after treatment to greater Cd concentrations, but their levels in relation to cadmium body burdens did not fully explain low sensitivity of late instars to cadmium, which indicates some other effective way of detoxification in late instars. This study brings new information related to the role of MTs in age-dependent toxicant sensitivity and discusses the implications of divergence in data generated by chironomid sediment toxicity tests by standardized methods using different instars.

Zobrazit více v PubMed

Ecotoxicol Environ Saf. 2007 Jul;67(3):399-405 PubMed

Comp Biochem Physiol C Toxicol Pharmacol. 2011 May;153(4):381-91 PubMed

Cell Tissue Res. 2010 Jul;341(1):159-71 PubMed

Environ Toxicol Chem. 2003 Apr;22(4):845-54 PubMed

Environ Toxicol Chem. 2010 Mar;29(3):522-34 PubMed

Sci Total Environ. 2008 Jan 15;389(1):101-14 PubMed

Sensors (Basel). 2008 Jul 10;8(7):4081-4094 PubMed

Aquat Toxicol. 2009 Aug 31;94(2):131-7 PubMed

Sensors (Basel). 2008 Apr 01;8(4):2293-2305 PubMed

Environ Toxicol Chem. 2002 Sep;21(9):1836-44 PubMed

Environ Toxicol Chem. 2003 Oct;22(10):2476-81 PubMed

J Environ Sci Health B. 2015;50(1):34-44 PubMed

Chemosphere. 2007 Jan;66(3):397-403 PubMed

Aquat Toxicol. 2006 Feb 10;76(2):160-202 PubMed

Aquat Toxicol. 2007 Aug 30;84(2):153-61 PubMed

Sci Total Environ. 2011 Sep 15;409(20):4187-97 PubMed

Environ Pollut. 2012 Mar;162:8-14 PubMed

Environ Toxicol Chem. 2007 May;26(5):1018-22 PubMed

Sci Total Environ. 2013 Aug 1;458-460:47-53 PubMed

Environ Toxicol Chem. 2006 Oct;25(10):2662-74 PubMed

Bull Environ Contam Toxicol. 1998 Dec;61(6):778-85 PubMed

Chemosphere. 2011 Sep;85(1):114-21 PubMed

Biometals. 2004 Oct;17(5):531-4 PubMed

Environ Pollut. 2004;127(1):99-107 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...