Metallothionein modulation in relation to cadmium bioaccumulation and age-dependent sensitivity of Chironomus riparius larvae
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26957427
DOI
10.1007/s11356-016-6362-5
PII: 10.1007/s11356-016-6362-5
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial sediment, Bioaccumulation, Cadmium, Chironomus, Metallothionein,
- MeSH
- Chironomidae účinky léků MeSH
- kadmium toxicita MeSH
- larva účinky léků MeSH
- metalothionein analýza metabolismus MeSH
- testy toxicity MeSH
- vystavení vlivu životního prostředí MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium MeSH
- metalothionein MeSH
The goal of this study was to contribute to understanding of the mechanisms behind sensitivity differences between early and late instar larvae of Chironomus riparius and to address the influence of the differences in standard testing approaches on the toxicity evaluation. A 10-day contact sediment toxicity test was carried out to assess sensitivity to cadmium exposure in relation to different age and laboratory culture line origin of test organisms. Chironomid larvae of early (OECD 218 method) and late instar (US-EPA600/R-99/064 method) differed substantially in sensitivity of traditional endpoints (OECD: LOEC 50 and 10 μg Cd/g dry weight (dw); US-EPA: LOEC > 1000 and 100 μg Cd/g dw for survival and growth, respectively). Bioaccumulated cadmium and metallothioneins (MTs) concentrations were analyzed to investigate the role of MTs in reduced sensitivity to cadmium in late instar larvae. Metallothioneins were induced after treatment to greater Cd concentrations, but their levels in relation to cadmium body burdens did not fully explain low sensitivity of late instars to cadmium, which indicates some other effective way of detoxification in late instars. This study brings new information related to the role of MTs in age-dependent toxicant sensitivity and discusses the implications of divergence in data generated by chironomid sediment toxicity tests by standardized methods using different instars.
Zobrazit více v PubMed
Ecotoxicol Environ Saf. 2007 Jul;67(3):399-405 PubMed
Comp Biochem Physiol C Toxicol Pharmacol. 2011 May;153(4):381-91 PubMed
Cell Tissue Res. 2010 Jul;341(1):159-71 PubMed
Environ Toxicol Chem. 2003 Apr;22(4):845-54 PubMed
Environ Toxicol Chem. 2010 Mar;29(3):522-34 PubMed
Sci Total Environ. 2008 Jan 15;389(1):101-14 PubMed
Sensors (Basel). 2008 Jul 10;8(7):4081-4094 PubMed
Aquat Toxicol. 2009 Aug 31;94(2):131-7 PubMed
Sensors (Basel). 2008 Apr 01;8(4):2293-2305 PubMed
Environ Toxicol Chem. 2002 Sep;21(9):1836-44 PubMed
Environ Toxicol Chem. 2003 Oct;22(10):2476-81 PubMed
J Environ Sci Health B. 2015;50(1):34-44 PubMed
Chemosphere. 2007 Jan;66(3):397-403 PubMed
Aquat Toxicol. 2006 Feb 10;76(2):160-202 PubMed
Aquat Toxicol. 2007 Aug 30;84(2):153-61 PubMed
Sci Total Environ. 2011 Sep 15;409(20):4187-97 PubMed
Environ Pollut. 2012 Mar;162:8-14 PubMed
Environ Toxicol Chem. 2007 May;26(5):1018-22 PubMed
Sci Total Environ. 2013 Aug 1;458-460:47-53 PubMed
Environ Toxicol Chem. 2006 Oct;25(10):2662-74 PubMed
Bull Environ Contam Toxicol. 1998 Dec;61(6):778-85 PubMed
Chemosphere. 2011 Sep;85(1):114-21 PubMed
Biometals. 2004 Oct;17(5):531-4 PubMed
Environ Pollut. 2004;127(1):99-107 PubMed