Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications

. 2022 Dec 07 ; 15 (24) : . [epub] 20221207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36556517

Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016944 Improvement in Quality of the Internal Grant Scheme at Czech University of Life Science Prague

Tea waste as a potential biofuel and bio fertilizer was analyzed. Samples were collected from various tea species and torrefied to five different temperatures. All samples were analyzed for their proximal composition and calorific value. From the results, stoichiometric properties were calculated. A phytotoxicity test was performed, and the germination index was measured. Tea waste torrefied at 350 °C may be suitable biofuel reaching the calorific value of 25-27 MJ kg-1, but with quite a high share of ash, up to 10%, which makes its use technically challenging and may lead to operating issues in a combustion chamber. The same biochar may be a suitable fertilizer for increasing the germination index, therefore, applicable to the soil. The non-torrefied sample and the sample treated at 250 °C are not suitable as fertilizers for being toxic. The total phenolic content in waste black tea was reduced from 41.26 to 0.21 mg g-1, depending on the torrefaction temperature. The total flavonoid content was also reduced from 60.49 to 0.5 mg g-1. The total antioxidant activity in the non-torrefied sample was 144 mg g-1, and after torrefaction at 550 °C, it was 0.82 mg g-1. The results showed that black tea waste residues have the potential for further use, for example, in agriculture as a soil amendment or as a potential biofuel.

Zobrazit více v PubMed

European Environment Agency Closing the Loop—An EU Action Plan for the Circular Economy COM/2015/0614 Final. [(accessed on 28 August 2022)]. Available online: https://www.eea.europa.eu/policy-documents/com-2015-0614-final.

Malaták J., Jevic P., Gürdil G.A.K., Selvi K.Ç. Biomass Heat-Emission Characteristics of Energy Plants. AMA Agric. Mech. Asia Afr. Lat. Am. 2008;39:9–13.

Malaták J., Velebil J., Bradna J., Gendek A., Tamelová B. Evaluation of Co and NoxEmissions in Real-Life Operating Conditions of Herbaceous Biomass Briquettes Combustion. Acta Technol. Agric. 2020;23:53–59. doi: 10.2478/ATA-2020-0009. DOI

Sutton D., Kelleher B., Ross J.R.H. Review of Literature on Catalysts for Biomass Gasification. Fuel Process. Technol. 2001;73:155–173. doi: 10.1016/S0378-3820(01)00208-9. DOI

Akhtar A., Krepl V., Ivanova T. A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass. Energy Fuels. 2018;32:7294–7318. doi: 10.1021/acs.energyfuels.8b01678. DOI

Bożym M., Gendek A., Siemiątkowski G., Aniszewska M., Malaťák J. Assessment of the Composition of Forest Waste in Terms of Its Further Use. Materials. 2021;14:973. doi: 10.3390/ma14040973. PubMed DOI PMC

Tamelová B., Malaťák J., Velebil J. Energy Valorisation of Citrus Peel Waste by Torrefaction Treatment. Agron. Res. 2018;16:276–285. doi: 10.15159/AR.18.029. DOI

Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Energy Utilization of Torrefied Residue from Wine Production. Materials. 2021;14:1610. doi: 10.3390/ma14071610. PubMed DOI PMC

Vivek V. Global Market Report: Tea | International Institute for Sustainable Development. [(accessed on 1 October 2022)]. Available online: https://www.iisd.org/publications/report/global-market-report-tea.

Akbayrak S., Özçifçi Z., Tabak A. Activated Carbon Derived from Tea Waste: A Promising Supporting Material for Metal Nanoparticles Used as Catalysts in Hydrolysis of Ammonia Borane. Biomass Bioenergy. 2020;138:105589. doi: 10.1016/j.biombioe.2020.105589. DOI

Taşar Ş. Thermal Conversion Behavior of Cellulose and Hemicellulose Fractions Isolated from Tea Leaf Brewing Waste: Kinetic and Thermodynamic Evaluation. Biomass Convers. Biorefin. 2022;12:2935–2947. doi: 10.1007/s13399-021-01697-2. DOI

Sheikhzadeh N., Nofouzi K., Delazar A., Oushani A.K. Immunomodulatory Effects of Decaffeinated Green Tea (Camellia Sinensis) on the Immune System of Rainbow Trout (Oncorhynchus Mykiss) Fish Shellfish Immunol. 2011;31:1268–1269. doi: 10.1016/j.fsi.2011.09.010. PubMed DOI

Debnath B., Haldar D., Purkait M.K. Potential and Sustainable Utilization of Tea Waste: A Review on Present Status and Future Trends. J. Environ. Chem. Eng. 2021;9:106179. doi: 10.1016/j.jece.2021.106179. DOI

Nag Chaudhuri A.K., Karmakar S., Roy D., Pal S., Pal M., Sen T. Anti-Inflammatory Activity of Indian Black Tea (Sikkim Variety) Pharmacol. Res. 2005;51:169–175. doi: 10.1016/j.phrs.2004.07.008. PubMed DOI

Krasucka P., Pan B., Sik Ok Y., Mohan D., Sarkar B., Oleszczuk P. Engineered Biochar—A Sustainable Solution for the Removal of Antibiotics from Water. Chem. Eng. J. 2021;405:126926. doi: 10.1016/j.cej.2020.126926. DOI

Ahsan M.A., Katla S.K., Islam M.T., Hernandez-Viezcas J.A., Martinez L.M., Díaz-Moreno C.A., Lopez J., Singamaneni S.R., Banuelos J., Gardea-Torresdey J., et al. Adsorptive Removal of Methylene Blue, Tetracycline and Cr(VI) from Water Using Sulfonated Tea Waste. Environ. Technol. Innov. 2018;11:23–40. doi: 10.1016/j.eti.2018.04.003. DOI

Khalil U., Bilal Shakoor M., Ali S., Rizwan M., Nasser Alyemeni M., Wijaya L. Adsorption-Reduction Performance of Tea Waste and Rice Husk Biochars for Cr(VI) Elimination from Wastewater. J. Saudi Chem. Soc. 2020;24:799–810. doi: 10.1016/j.jscs.2020.07.001. DOI

Shakoor M.B., Bibi I., Niazi N.K., Shahid M., Nawaz M.F., Farooqi A., Naidu R., Rahman M.M., Murtaza G., Lüttge A. The Evaluation of Arsenic Contamination Potential, Speciation and Hydrogeochemical Behaviour in Aquifers of Punjab, Pakistan. Chemosphere. 2018;199:737–746. doi: 10.1016/j.chemosphere.2018.02.002. PubMed DOI

Aksay M.V., Ozkaymak M., Calhan R. Co-Digestion of Cattle Manure and Tea Waste for Biogas Production. Int. J. Renew. Energy Res. 2018;8:1346–1353. doi: 10.20508/IJRER.V8I3.7804.G7434. DOI

Manyuchi M.M., Mbohwa C., Muzenda E. Biogas and Bio Solids Production from Tea Waste through Anaerobic Digestion; Proceedings of the International Conference on Industrial Engineering and Operations Management; Paris, France. 26–27 July 2018; pp. 2519–2525.

Ayas N., Esen T. Hydrogen Production from Tea Waste. Int. J. Hydrog. Energy. 2016;41:8067–8072. doi: 10.1016/j.ijhydene.2015.09.156. DOI

Özarslan S., Abut S., Atelge M.R., Kaya M., Unalan S. Modeling and Simulation of Co-Digestion Performance with Artificial Neural Network for Prediction of Methane Production from Tea Factory Waste with Co-Substrate of Spent Tea Waste. Fuel. 2021;306 doi: 10.1016/j.fuel.2021.121715. DOI

Çaǧlar A., Demirbaş A. Hydrogen-Rich Gaseous Products from Tea Waste by Pyrolysis. Energy Sources. 2001;23:739–746. doi: 10.1080/009083101316862499. DOI

Mizuno S., Ida T., Fuchihata M., Namba K. Effect of Specimen Size on Ultimate Compressive Strength of Bio-Coke Produced from Green Tea Grounds. Mech. Eng. J. 2016;3:15–00441. doi: 10.1299/mej.15-00441. DOI

Pua F.L., Subari M.S., Ean L.W., Krishnan S.G. Characterization of Biomass Fuel Pellets Made from Malaysia Tea Waste and Oil Palm Empty Fruit Bunch. Mater. Today Proc. 2020;31:187–190. doi: 10.1016/j.matpr.2020.02.218. DOI

Intagun W., Kanoksilapatham W., Maden A., Nobaew B. Effect of Natural Additive on Pellets Physical Properties and Energy Cost; Proceedings of the 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering, REPE 2019; Toronto, ON, Canada. 2–4 November 2019; pp. 130–134. DOI

Zhang J., Guo Y. Physical Properties of Solid Fuel Briquettes Made from Caragana Korshinskii Kom. Powder Technol. 2014;256:293–299. doi: 10.1016/j.powtec.2014.02.025. DOI

Zhang L., Xu C.C., Lei H., Wang H.L., Ning T.T., Hao W., Hu X.D. Effects of Addition of Various Ingredients during Pelletizing on Physical Characteristics of Green Tea Residue Pellets. Appl. Eng. Agric. 2014;30:49–53. doi: 10.13031/AEA.30.10160/REFERENCES. DOI

Cai H., Zou H., Liu J., Xie W., Kuo J., Buyukada M., Evrendilek F. Thermal Degradations and Processes of Waste Tea and Tea Leaves via TG-FTIR: Combustion Performances, Kinetics, Thermodynamics, Products and Optimization. Bioresour. Technol. 2018;268:715–725. doi: 10.1016/j.biortech.2018.08.068. PubMed DOI

Islam M.A., Benhouria A., Asif M., Hameed B.H. Methylene Blue Adsorption on Factory-Rejected Tea Activated Carbon Prepared by Conjunction of Hydrothermal Carbonization and Sodium Hydroxide Activation Processes. J. Taiwan Inst. Chem. Eng. 2015;52:57–64. doi: 10.1016/j.jtice.2015.02.010. DOI

Malaťák J., Dlabaja T. Hydrothermal Carbonization of Kitchen Waste. Res. Agric. Eng. 2016;62:64–72. doi: 10.17221/34/2014-RAE. DOI

Azapagic A., Bore J., Cheserek B., Kamunya S., Elbehri A. The Global Warming Potential of Production and Consumption of Kenyan Tea. J. Clean Prod. 2016;112:4031–4040. doi: 10.1016/j.jclepro.2015.07.029. DOI

Xu Q., Hu K., Wang X., Wang D., Knudsen M.T. Carbon Footprint and Primary Energy Demand of Organic Tea in China Using a Life Cycle Assessment Approach. J. Clean Prod. 2019;233:782–792. doi: 10.1016/j.jclepro.2019.06.136. DOI

Cichorowski G., Joa B., Hottenroth H., Schmidt M. Scenario Analysis of Life Cycle Greenhouse Gas Emissions of Darjeeling Tea. Int. J. Life Cycle Assess. 2015;20:426–439. doi: 10.1007/s11367-014-0840-0. DOI

Liang L., Ridoutt B.G., Wang L., Xie B., Li M., Li Z. China’s Tea Industry: Net Greenhouse Gas Emissions and Mitigation Potential. Agriculture. 2021;11:363. doi: 10.3390/agriculture11040363. DOI

He Y., Yao Y., Ji Y., Deng J., Zhou G., Liu R., Shao J., Zhou L., Li N., Zhou X., et al. Biochar Amendment Boosts Photosynthesis and Biomass in C3 but Not C4 Plants: A Global Synthesis. GCB Bioenergy. 2020;12:605–617. doi: 10.1111/gcbb.12720. DOI

Kuppusamy S., Thavamani P., Megharaj M., Venkateswarlu K., Naidu R. Agronomic and Remedial Benefits and Risks of Applying Biochar to Soil: Current Knowledge and Future Research Directions. Environ. Int. 2016;87:1–12. doi: 10.1016/j.envint.2015.10.018. PubMed DOI

Ding Y., Liu Y., Liu S., Li Z., Tan X., Huang X., Zeng G., Zhou L., Zheng B. Biochar to Improve Soil Fertility. A Review. Agron. Sustain. Dev. 2016;36:36. doi: 10.1007/s13593-016-0372-z. DOI

Dey D., Mavi M.S. Co-Application of Biochar with Non-Pyrolyzed Organic Material Accelerates Carbon Accrual and Nutrient Availability in Soil. Environ. Technol. Innov. 2022;25:102128. doi: 10.1016/j.eti.2021.102128. DOI

Malaťák J., Passian L. Heat-Emission Analysis of Small Combustion Equipments for Biomass. Res. Agric. Eng. 2011;57:37–50. doi: 10.17221/28/2010-RAE. DOI

Uhlí a Koks—Stanovení Spalného Tepla. Czech Standardization Agency; Prague, Czech Republic: [(accessed on 26 August 2022)]. Available online: https://www.technicke-normy-csn.cz/csn-iso-1928-441352-205351.html.

Jeníček L., Tunklová B., Malat’ák J., Neškudla M., Velebil J. Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. Materials. 2022;15:6722. doi: 10.3390/ma15196722. PubMed DOI PMC

Silva M.P., Nieva Lobos M.L., Piloni R.v., Dusso D., González Quijón M.E., Scopel A.L., Moyano E.L. Pyrolytic Biochars from Sunflower Seed Shells, Peanut Shells and Spirulina Algae: Their Potential as Soil Amendment and Natural Growth Regulators. SN Appl. Sci. 2020;2:1926. doi: 10.1007/s42452-020-03730-x. DOI

State Institute for Drug Control . Czech Pharmacopoeai. Grada Publishing a.s.; Prague, Czech Republic: 2017.

Singleton V.L., Rossi J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965;16:144–158.

Chang C.C., Yang M.H., Wen H.M., Chern J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2020;10:3. doi: 10.38212/2224-6614.2748. DOI

Subhasree B., Baskar R., Laxmi Keerthana R., Lijina Susan R., Rajasekaran P. Evaluation of Antioxidant Potential in Selected Green Leafy Vegetables. Food Chem. 2009;115:1213–1220. doi: 10.1016/j.foodchem.2009.01.029. DOI

Sermyagina E., Mendoza Martinez C.L., Nikku M., Vakkilainen E. Spent Coffee Grounds and Tea Leaf Residues: Characterization, Evaluation of Thermal Reactivity and Recovery of High-Value Compounds. Biomass Bioenergy. 2021;150:106141. doi: 10.1016/j.biombioe.2021.106141. DOI

Jenicek L., Neskudla M., Malatak J., Velebil J., Passian L. Spruce and Barley Elemental and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technol. Agric. 2021;24:166–172. doi: 10.2478/ATA-2021-0028. DOI

Juszczak M. Comparison of CO and NOx Concentrations from a 20 KW Boiler for Periodic and Constant Wood Pellet Supply. Environ. Prot. Eng. 2020;42 doi: 10.37190/epe160308. DOI

Tamelová B., Malaťák J., Velebil J., Gendek A., Aniszewska M. Impact of Torrefaction on Fuel Properties of Aspiration Cleaning Residues. Materials. 2022;15:6949. doi: 10.3390/ma15196949. PubMed DOI PMC

Malaťák J., Velebil J., Malaťáková J., Passian L., Bradna J., Tamelová B., Gendek A., Aniszewska M. Reducing Emissions from Combustion of Grape Residues in Mixtures with Herbaceous Biomass. Materials. 2022;15:7288. doi: 10.3390/ma15207288. PubMed DOI PMC

Chatterjee P., Chandra S., Dey P., Bhattacharya S. Comparative Study of Allelopathic Effects of Green Tea and Black Tea. Curr. Trends Biotechnol. Pharm. 2013;7:644–649.

Bizuayehu D., Atlabachew M., Ali M.T. Determination of Some Selected Secondary Metabolites and Their Invitro Antioxidant Activity in Commercially Available Ethiopian Tea (Camellia Sinensis) Springerplus. 2016;5:412. doi: 10.1186/s40064-016-2056-1. PubMed DOI PMC

Rezaeinodehi A., Khangholi S., Aminidehaghi M. Allelopathic Potential of Tea (Camellia Sinensis (L.) Kuntze) on Germination and Growth of Amaranthus Retroflexus L. and Setaria Glauca (L.) P. Beauv. J. Plant Dis. Prot. New Ser. 2006;S20:447–454.

Borgohain A., Konwar K., Buragohain D., Varghese S., Kumar Dutta A., Paul R.K., Khare P., Karak T. Temperature Effect on Biochar Produced from Tea (Camellia Sinensis L.) Pruning Litters: A Comprehensive Treatise on Physico-Chemical and Statistical Approaches. Bioresour. Technol. 2020;318:124023. doi: 10.1016/j.biortech.2020.124023. PubMed DOI

Bourguiba H., Scotti I., Sauvage C., Zhebentyayeva T., Ledbetter C., Krška B., Remay A., D’Onofrio C., Iketani H., Christen D., et al. Genetic Structure of a Worldwide Germplasm Collection of Prunus armeniaca L. Reveals Three Major Diffusion Routes for Varieties Coming from the Species’ Center of Origin. Front. Plant Sci. 2020;11:638. doi: 10.3389/fpls.2020.00638. PubMed DOI PMC

Kopjar M., Tadić M., Piližota V. Phenol Content and Antioxidant Activity of Green, Yellow and Black Tea Leaves. Chem. Biol. Technol. Agric. 2015;2:1. doi: 10.1186/s40538-014-0028-7. DOI

Abdeltaif S.A., Sirelkhatim K.A., Hassan A.B. Estimation of Phenolic and Flavonoid Compounds and Antioxidant Activity of Spent Coffee and Black Tea (Processing) Waste for Potential Recovery and Reuse in Sudan. Recycling. 2018;3:27. doi: 10.3390/recycling3020027. DOI

Rahman M., Jahan I.A., Ahmed S., Ahmed K.S., Roy M., Zzaman W., Ahmad I. Bioactive Compounds and Antioxidant Activity of Black and Green Tea Available in Bangladesh. Food Res. 2021;5:107–111. doi: 10.26656/fr.2017.5(3).491. PubMed DOI

Kodama D.H., Gonçalves A.E.d.S.S., Lajolo F.M., Genovese M.I. Flavonoids, Total Phenolics and Antioxidant Capacity: Comparison between Commercial Green Tea Preparations. Food Sci. Technol. 2010;30:1077–1082. doi: 10.1590/S0101-20612010000400037. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...