Evidence of endogenously produced hydrogen sulfide (H2S) and persulfidation in male reproduction
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
PubMed
35794129
PubMed Central
PMC9259693
DOI
10.1038/s41598-022-15360-x
PII: 10.1038/s41598-022-15360-x
Knihovny.cz E-zdroje
- MeSH
- cystathionin-gama-lyasa metabolismus MeSH
- cystein metabolismus MeSH
- lidé MeSH
- rozmnožování MeSH
- sperma metabolismus MeSH
- sulfan * metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- cystathionin-gama-lyasa MeSH
- cystein MeSH
- sulfan * MeSH
Persulfidation contributes to a group of redox post-translational modifications (PTMs), which arise exclusively on the sulfhydryl group of cysteine as a result of hydrogen sulfide (H2S) action. Redox-active molecules, including H2S, contribute to sperm development; therefore, redox PTMs represent an extremely important signalling pathway in sperm life. In this path, persulfidation prevents protein damage caused by irreversible cysteine hyperoxidation and thus maintains this signalling pathway. In our study, we detected both H2S and its production by all H2S-releasing enzymes (cystathionine γ-lyase (CTH), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (MPST)) in male reproduction, including spermatozoa. We provided evidence that sperm H2S leads to persulfidation of proteins, such as glyceraldehyde-3-phosphate dehydrogenase, tubulin, and anchor protein A-kinase. Overall, this study suggests that persulfidation, as a part of the redox signalling pathway, is tightly regulated by enzymatic H2S production and is required for sperm viability.
Biomedical Center in Pilsen Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Institute of Animal Science Prague 10 Uhrineves Czech Republic
Zobrazit více v PubMed
Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017;84:1039–1052. doi: 10.1002/mrd.22871. PubMed DOI
Machado-Oliveira G, et al. Mobilisation of Ca2+ stores and flagellar regulation in human sperm by S-nitrosylation: A role for NO synthesised in the female reproductive tract. Development. 2008;135:3677–3686. doi: 10.1242/dev.024521. PubMed DOI PMC
O’Flaherty C. Redox regulation of mammalian sperm capacitation. Asian J. Androl. 2015;17:583. doi: 10.4103/1008-682X.153303. PubMed DOI PMC
Fu L, et al. Direct proteomic mapping of cysteine persulfidation. Antioxid. Redox Signal. 2020;33:1061–1076. doi: 10.1089/ars.2019.7777. PubMed DOI
Longen S, et al. Quantitative Persulfide Site Identification (qPerS-SID) reveals protein targets of H2S releasing donors in mammalian cells. Sci. Rep. 2016;6:1–12. doi: 10.1038/srep29808. PubMed DOI PMC
Wood ZA, Schröder E, Harris JR, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003;28:32–40. doi: 10.1016/S0968-0004(02)00003-8. PubMed DOI
Sun J, Steenbergen C, Murrhy E. S-Nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid. Redox Signal. 2006;8:1693–1705. doi: 10.1089/ars.2006.8.1693. PubMed DOI PMC
Dóka, et al. Control of protein function through oxidation and reduction of persulfidated states. Sci. Adv. 2020;6:eaax8358. doi: 10.1126/sciadv.aax8358. PubMed DOI PMC
Petrovic D, Kouroussis E, Vignane T, Filipovic MR. The role of protein persulfidation in brain aging and neurodegeneration. Front. Aging Neurosci. 2021;13:1–12. doi: 10.3389/fnagi.2021.674135. PubMed DOI PMC
Lefièvre L, et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: An alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007;7:3066–3084. doi: 10.1002/pmic.200700254. PubMed DOI PMC
Li G, Xie ZZ, Chua JMW, Wong PC, Bian J. Hydrogen sulfide protects testicular germ cells against heat-induced injury. Nitric Oxide Biol. Chem. 2015;46:165–171. doi: 10.1016/j.niox.2014.10.005. PubMed DOI
Wang J, et al. Hydrogen sulfide as a potential target in preventing spermatogenic failure and testicular dysfunction. Antioxid. Redox Signal. 2017;28:1447–1462. doi: 10.1089/ars.2016.6968. PubMed DOI
Zhang Y, et al. Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Mol. Cell. Biol. 2013;33:1104–1113. doi: 10.1128/MCB.01215-12. PubMed DOI PMC
Pintus E, Jovičić M, Kadlec M, Ros-Santaella JL. Divergent effect of fast- and slow-releasing H2S donors on boar spermatozoa under oxidative stress. Sci. Rep. 2020;10:6508. doi: 10.1038/s41598-020-63489-4. PubMed DOI PMC
Zhang W, et al. Decrease in male mouse fertility by hydrogen sulfide and/or ammonia can Be inheritable. Chemosphere. 2018;194:147–157. doi: 10.1016/j.chemosphere.2017.11.164. PubMed DOI
Mustafa AK, et al. HS signals through protein S-Sulfhydration. Sci. Signal. 2009;2:ra72. PubMed PMC
Gao DD, et al. Cellular mechanism underlying hydrogen sulfide mediated epithelial K+ secretion in rat epididymis. Front. Physiol. 2019;10:1886. doi: 10.3389/fphys.2018.01886. PubMed DOI PMC
Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ. Res. 2014;114:730. doi: 10.1161/CIRCRESAHA.114.300505. PubMed DOI PMC
Chatterjee S, de Lamirande E, Gagnon C. Cryopreservation alters membrane sulfhydryl status of bull spermatozoa: Protection by oxidized glutathione. Mol. Reprod. Dev. 2001;60:498–506. doi: 10.1002/mrd.1115. PubMed DOI
Finelli MJ. Redox post-translational modifications of protein thiols in brain aging and neurodegenerative conditions—Focus on S-Nitrosation. Front. Aging Neurosci. 2020;12:1–21. doi: 10.3389/fnagi.2020.00254. PubMed DOI PMC
Aitken RJ. The capacitation-apoptosis highway: Oxysterols and mammalian sperm function. Biol. Reprod. 2011;85:9–12. doi: 10.1095/biolreprod.111.092528. PubMed DOI
O’Flaherty C, Matsushita-Fournier D. Reactive oxygen species and protein modifications in spermatozoa†. Biol. Reprod. 2017;97:577–585. doi: 10.1093/biolre/iox104. PubMed DOI
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. 2010;8:94–99. doi: 10.1371/journal.pbio.1000412. PubMed DOI PMC
World Health Organization . WHO Laboratory Manual for the Examination and Processing of Human Semen. World Health Organization; 2010.
Kerns K, Zigo M, Sutovsky P. Zinc: A necessary ion for mammalian sperm fertilization competency. Int. J. Mol. Sci. 2018;19:4097. doi: 10.3390/ijms19124097. PubMed DOI PMC
Abeydeera LR, Wang WH, Cantley TC, Prather RS, Day BN. Presence of β-mercaptoethanol can increased the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology. 1998;50:747–756. doi: 10.1016/S0093-691X(98)00180-0. PubMed DOI
Xu Z, et al. Ischemia-reperfusion reduces cystathionine-β-synthase-mediated hydrogen sulfide generation in the kidney. Am. J. Physiol. Renal Physiol. 2009;297:F27–F35. doi: 10.1152/ajprenal.00096.2009. PubMed DOI
Zigo M, Manaskova-Postlerova P, Jonakova V, Kerns K, Sutovsky P. Compartmentalization of the proteasome-interacting proteins during sperm capacitation. Sci. Rep. 2019;9:1–18. doi: 10.1038/s41598-019-49024-0. PubMed DOI PMC
Ruiz-Díaz S, et al. Changes in the cellular distribution of tyrosine phosphorylation and its relationship with the acrosomal exocytosis and plasma membrane integrity during in vitro capacitation of frozen/thawed bull spermatozoa. Int. J. Mol. Sci. 2020;21:2725. doi: 10.3390/ijms21082725. PubMed DOI PMC
Nevoral J, Kolinko Y, Moravec J, Žalmanová T, Hošková K, Prokešová S, et al. Long-term exposure to very low doses of bisphenol S affects female reproduction. Reproduction. 2018 doi: 10.1530/REP-18-0092. PubMed DOI
Hydrogen sulfide and its potential as a possible therapeutic agent in male reproduction