Compartmentalization of the proteasome-interacting proteins during sperm capacitation

. 2019 Aug 29 ; 9 (1) : 12583. [epub] 20190829

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid31467409
Odkazy

PubMed 31467409
PubMed Central PMC6715765
DOI 10.1038/s41598-019-49024-0
PII: 10.1038/s41598-019-49024-0
Knihovny.cz E-zdroje

Ubiquitination is a stable, reversible posttranslational modification of target proteins by covalent ligation of the small chaperone protein ubiquitin. Most commonly ubiquitination targets proteins for degradation/recycling by the 26S proteasome in a well-characterized enzymatic cascade. Studies using human and non-human mammalian spermatozoa revealed the role of the ubiquitin-proteasome system (UPS) in the regulation of fertilization, including sperm-zona pellucida (ZP) interactions as well as the early events of sperm capacitation, the remodeling of the sperm plasma membrane and acrosome, and for the acquisition of sperm fertilizing ability. The present study investigated the activity of UPS during in vitro capacitation of fresh boar spermatozoa in relation to changes in sperm proteome. Parallel and sequential treatments of ejaculated and capacitated spermatozoa under proteasome permissive/inhibiting conditions were used to isolate putative sperm proteasome-associated sperm proteins in a compartment-specific manner. A differential proteomic approach employing 1D PAGE revealed differences in accumulated proteins at the molecular weights of 60, 58, 49, and 35 kDa, and MS analysis revealed the accumulation of proteins previously reported as proteasome co-purifying proteins, as well as some novel proteins. Among others, P47/lactadherin, ACRBP, ADAM5, and SPINK2 (alias SAAI) were processed by the proteasome in a capacitation dependent manner. Furthermore, the capacitation-induced reorganization of the outer acrosomal membrane was slowed down in the presence of proteasomal inhibitors. These novel results support the proposed role of UPS in sperm capacitation and open several new lines of inquiry into sperm capacitation mechanism.

Zobrazit více v PubMed

Cooper, G. & Hausman, R. The cell: a molecular approach. Seventh edition edn, (Sinauer Associates, 2016).

Sutovsky P. Sperm proteasome and fertilization. Reproduction (Cambridge, England) 2011;142:1–14. doi: 10.1530/rep-11-0041. PubMed DOI

Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological reviews. 2002;82:373–428. doi: 10.1152/physrev.00027.2001. PubMed DOI

Morales P, Diaz ES, Kong M. Proteasome activity and its relationship with protein phosphorylation during capacitation and acrosome reaction in human spermatozoa. Society of Reproduction and Fertility supplement. 2007;65:269–273. PubMed

Zimmerman SW, et al. Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization. PloS one. 2011;6:e17256. doi: 10.1371/journal.pone.0017256. PubMed DOI PMC

Sutovsky P, et al. Proteasomal interference prevents zona pellucida penetration and fertilization in mammals. Biology of reproduction. 2004;71:1625–1637. doi: 10.1095/biolreprod.104.032532. PubMed DOI

Yokota N, Sawada H. Sperm proteasomes are responsible for the acrosome reaction and sperm penetration of the vitelline envelope during fertilization of the sea urchin Pseudocentrotus depressus. Developmental biology. 2007;308:222–231. doi: 10.1016/j.ydbio.2007.05.025. PubMed DOI

Sasanami T, et al. Sperm proteasome degrades egg envelope glycoprotein ZP1 during fertilization of Japanese quail (Coturnix japonica) Reproduction (Cambridge, England) 2012;144:423–431. doi: 10.1530/rep-12-0165. PubMed DOI

Sawada, H., Pinto, M. R. & De Santis, R. Participation of sperm proteasome in fertilization of the phlebobranch ascidian Ciona intestinalis. Molecular reproduction and development50, 493–498, 10.1002/(sici)1098-2795(199808)50:4<493::aid-mrd13>3.0.co;2-3 (1998). PubMed

Zimmerman S, Sutovsky P. The sperm proteasome during sperm capacitation and fertilization. Journal of reproductive immunology. 2009;83:19–25. doi: 10.1016/j.jri.2009.07.006. PubMed DOI

Yi YJ, Manandhar G, Oko RJ, Breed WG, Sutovsky P. Mechanism of sperm-zona pellucida penetration during mammalian fertilization: 26S proteasome as a candidate egg coat lysin. Society of Reproduction and Fertility supplement. 2007;63:385–408. PubMed

Zigo M, Jonakova V, Manaskova-Postlerova P, Kerns K, Sutovsky P. Ubiquitin-proteasome system participates in the de-aggregation of spermadhesin and DQH protein during boar sperm capacitation. Reproduction (Cambridge, England) 2019 doi: 10.1530/rep-18-0413. PubMed DOI

Kerns K, Zigo M, Drobnis EZ, Sutovsky M, Sutovsky P. Zinc ion flux during mammalian sperm capacitation. Nature communications. 2018;9:2061. doi: 10.1038/s41467-018-04523-y. PubMed DOI PMC

Kerns K, Morales P, Sutovsky P. Regulation of Sperm Capacitation by the 26S Proteasome: An Emerging New Paradigm in Spermatology. Biology of reproduction. 2016;94:117. doi: 10.1095/biolreprod.115.136622. PubMed DOI

Austin CR. The capacitation of the mammalian sperm. Nature. 1952;170:326. doi: 10.1038/170326a0. PubMed DOI

Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 1951;168:697–698. doi: 10.1038/168697b0. PubMed DOI

Visconti PE, et al. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development (Cambridge, England) 1995;121:1129–1137. PubMed

Kong M, Diaz ES, Morales P. Participation of the human sperm proteasome in the capacitation process and its regulation by protein kinase A and tyrosine kinase. Biology of reproduction. 2009;80:1026–1035. doi: 10.1095/biolreprod.108.073924. PubMed DOI

Kongmanas K, et al. Proteomic Characterization of Pig Sperm Anterior Head Plasma Membrane Reveals Roles of Acrosomal Proteins in ZP3 Binding. Journal of cellular physiology. 2015;230:449–463. doi: 10.1002/jcp.24728. PubMed DOI

Redgrove KA, et al. Involvement of multimeric protein complexes in mediating the capacitation-dependent binding of human spermatozoa to homologous zonae pellucidae. Developmental biology. 2011;356:460–474. doi: 10.1016/j.ydbio.2011.05.674. PubMed DOI

Dun MD, et al. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. The Journal of biological chemistry. 2011;286:36875–36887. doi: 10.1074/jbc.M110.188888. PubMed DOI PMC

Zigo M, Kerns K, Sutovsky M, Sutovsky P. Modifications of the 26S proteasome during boar sperm capacitation. Cell Tissue Res. 2018 doi: 10.1007/s00441-017-2786-6. PubMed DOI PMC

Hillman P, Ickowicz D, Vizel R, Breitbart H. Dissociation between AKAP3 and PKARII promotes AKAP3 degradation in sperm capacitation. PloS one. 2013;8:e68873. doi: 10.1371/journal.pone.0068873. PubMed DOI PMC

Yi YJ, et al. Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. International journal of andrology. 2012;35:196–210. doi: 10.1111/j.1365-2605.2011.01217.x. PubMed DOI

Miles EL, et al. Transgenic pig carrying green fluorescent proteasomes. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:6334–6339. doi: 10.1073/pnas.1220910110. PubMed DOI PMC

Sanchez R, et al. Participation of the sperm proteasome during in vitro fertilisation and the acrosome reaction in cattle. Andrologia. 2011;43:114–120. doi: 10.1111/j.1439-0272.2009.01031.x. PubMed DOI

Flesch FM, Colenbrander B, van Golde LM, Gadella BM. Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochemical and biophysical research communications. 1999;262:787–792. doi: 10.1006/bbrc.1999.1300. PubMed DOI

Tardif S, Dube C, Chevalier S, Bailey JL. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biology of reproduction. 2001;65:784–792. doi: 10.1095/biolreprod65.3.784. PubMed DOI

Ded L, Dostalova P, Dorosh A, Dvorakova-Hortova K, Peknicova J. Effect of estrogens on boar sperm capacitation in vitro. Reproductive biology and endocrinology: RB&E. 2010;8:87. doi: 10.1186/1477-7827-8-87. PubMed DOI PMC

Peknicova J, Moos J. Monoclonal antibodies against boar acrosomal antigens labelling undamaged acrosomes of spermatozoa in immunofluorescence test. Andrologia. 1990;22:427–435. doi: 10.1111/j.1439-0272.1990.tb02022.x. PubMed DOI

Baba T, et al. An acrosomal protein, sp32, in mammalian sperm is a binding protein specific for two proacrosins and an acrosin intermediate. The Journal of biological chemistry. 1994;269:10133–10140. PubMed

Yi YJ, et al. Interference with the 19S proteasomal regulatory complex subunit PSMD4 on the sperm surface inhibits sperm-zona pellucida penetration during porcine fertilization. Cell Tissue Res. 2010;341:325–340. doi: 10.1007/s00441-010-0988-2. PubMed DOI

Zigo M, Jonakova V, Sulc M, Manaskova-Postlerova P. Characterization of sperm surface protein patterns of ejaculated and capacitated boar sperm, with the detection of ZP binding candidates. Int J Biol Macromol. 2013;61:322–328. doi: 10.1016/j.ijbiomac.2013.07.014. PubMed DOI

Silva E, Frost D, Li L, Bovin N, Miller DJ. Lactadherin is a candidate oviduct Lewis X trisaccharide receptor on porcine spermatozoa. Andrology. 2017;5:589–597. doi: 10.1111/andr.12340. PubMed DOI PMC

Baba T, et al. Activation and maturation mechanisms of boar acrosin zymogen based on the deduced primary structure. The Journal of biological chemistry. 1989;264:11920–11927. PubMed

Baba T, Michikawa Y, Kawakura K, Arai Y. Activation of boar proacrosin is effected by processing at both N- and C-terminal portions of the zymogen molecule. FEBS letters. 1989;244:132–136. doi: 10.1016/0014-5793(89)81178-0. PubMed DOI

Parrish RF, Polakoski KL. Boar malpha-acrosin. Purification and characterization of the inital active enzyme resulting from the conversion of boar proacrosin to acrosin. The Journal of biological chemistry. 1978;253:8428–8432. PubMed

Polakoski KL, Parrish RF. Boar proacrosin. Purification and preliminary activation studies of proacrosin isolated from ejaculated boar sperm. The Journal of biological chemistry. 1977;252:1888–1894. PubMed

Signorelli J, Diaz ES, Morales P. Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res. 2012;349:765–782. doi: 10.1007/s00441-012-1370-3. PubMed DOI

Dube C, Beaulieu M, Reyes-Moreno C, Guillemette C, Bailey JL. Boar sperm storage capacity of BTS and Androhep Plus: viability, motility, capacitation, and tyrosine phosphorylation. Theriogenology. 2004;62:874–886. doi: 10.1016/j.theriogenology.2003.12.006. PubMed DOI

Krapf D, et al. Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. The Journal of biological chemistry. 2010;285:7977–7985. doi: 10.1074/jbc.M109.085845. PubMed DOI PMC

Jha KN, et al. Evidence for the involvement of proline-directed serine/threonine phosphorylation in sperm capacitation. Molecular human reproduction. 2006;12:781–789. doi: 10.1093/molehr/gal085. PubMed DOI

Tsai PS, Garcia-Gil N, van Haeften T, Gadella BM. How pig sperm prepares to fertilize: stable acrosome docking to the plasma membrane. PloS one. 2010;5:e11204. doi: 10.1371/journal.pone.0011204. PubMed DOI PMC

Ensslin M, et al. Molecular cloning and characterization of P47, a novel boar sperm-associated zona pellucida-binding protein homologous to a family of mammalian secretory proteins. Biology of reproduction. 1998;58:1057–1064. doi: 10.1095/biolreprod58.4.1057. PubMed DOI

Nagdas SK, Smith L, Medina-Ortiz I, Hernandez-Encarnacion L, Raychoudhury S. Identification of bovine sperm acrosomal proteins that interact with a 32-kDa acrosomal matrix protein. Molecular and cellular biochemistry. 2016;414:153–169. doi: 10.1007/s11010-016-2668-3. PubMed DOI PMC

Petrunkina AM, Lakamp A, Gentzel M, Ekhlasi-Hundrieser M, Topfer-Petersen E. Fate of lactadherin P47 during post-testicular maturation and capacitation of boar spermatozoa. Reproduction (Cambridge, England) 2003;125:377–387. doi: 10.1530/rep.0.1250377. PubMed DOI

Zigo M, et al. Panel of monoclonal antibodies to sperm surface proteins as a tool for monitoring localization and identification of sperm-zona pellucida receptors. Cell Tissue Res. 2015;359:895–908. doi: 10.1007/s00441-014-2072-9. PubMed DOI

Chakravarty S, Bansal P, Sutovsky P, Gupta SK. Role of proteasomal activity in the induction of acrosomal exocytosis in human spermatozoa. Reproductive biomedicine online. 2008;16:391–400. doi: 10.1016/S1472-6483(10)60601-3. PubMed DOI

Baba T, Michikawa Y, Kashiwabara S, Arai Y. Proacrosin activation in the presence of a 32-kDa protein from boar spermatozoa. Biochemical and biophysical research communications. 1989;160:1026–1032. doi: 10.1016/S0006-291X(89)80105-6. PubMed DOI

Dong HT, Shi WS, Tian Y, Cao LP, Jin Y. Expression and tyrosine phosphorylation of sp32 regulate the activation of the boar proacrosin/acrosin system. Genetics and molecular research: GMR. 2015;14:2374–2383. doi: 10.4238/2015.March.27.23. PubMed DOI

Kim T, et al. Expression and relationship of male reproductive ADAMs in mouse. Biology of reproduction. 2006;74:744–750. doi: 10.1095/biolreprod.105.048892. PubMed DOI

Davidova N, Jonakova V, Manaskova-Postlerova P. Expression and localization of acrosin inhibitor in boar reproductive tract. Cell Tissue Res. 2009;338:303–311. doi: 10.1007/s00441-009-0876-9. PubMed DOI

Jelinkova P, Manaskova P, Ticha M, Jonakova V. Proteinase inhibitors in aggregated forms of boar seminal plasma proteins. Int J Biol Macromol. 2003;32:99–107. doi: 10.1016/S0141-8130(03)00043-6. PubMed DOI

Jonakova V, et al. The complete primary structure of three isoforms of a boar sperm-associated acrosin inhibitor. FEBS letters. 1992;297:147–150. doi: 10.1016/0014-5793(92)80347-J. PubMed DOI

Kwok SC, Dai G, McMurtry JP. Molecular cloning and sequence analysis of the cDNA encoding porcine acrosin inhibitor. DNA and cell biology. 1994;13:389–394. doi: 10.1089/dna.1994.13.389. PubMed DOI

Manaskova-Postlerova P, et al. Acrosin inhibitor detection along the boar epididymis. Int J Biol Macromol. 2016;82:733–739. doi: 10.1016/j.ijbiomac.2015.10.034. PubMed DOI

Tschesche H, Kupfer S, Klauser R, Fink E, Fritz H. Structure, biochemistry and comparative aspects of mammalian seminal plasma acrosin inhibitors. Protides of the Biological Fluids. 1976;23:255–266.

Sanz L, Calvete JJ, Jonakova V, Topfer-Petersen E. Boar spermadhesins AQN-1 and AWN are sperm-associated acrosin inhibitor acceptor proteins. FEBS letters. 1992;300:63–66. doi: 10.1016/0014-5793(92)80164-C. PubMed DOI

Zaneveld LJ, Robertson RT, Kessler M, Williams WL. Inhibition of fertilization in vivo by pancreatic and seminal plasma trypsin inhibitors. Journal of reproduction and fertility. 1971;25:387–392. doi: 10.1530/jrf.0.0250387. PubMed DOI

Peknicova J, Moos J, Mollova M, Srsen V, Capkova J. Changes in immunochemical localisation of acrosomal and sperm proteins in boar spermatozoa during capacitation and induced acrosome reaction. Anim Reprod Sci. 1994;35:255–271. doi: 10.1016/0378-4320(94)90041-8. DOI

Jonakova V, Cechova D, Topfer-Petersen E, Calvete JJ, Veselsky L. Variability of acrosin inhibitors in boar reproductive tract. Biomedica biochimica acta. 1991;50:691–695. PubMed

Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chemistry & biology. 2001;8:739–758. doi: 10.1016/S1074-5521(01)00056-4. PubMed DOI

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. PubMed DOI PMC

Ishihama Y, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Molecular & cellular proteomics: MCP. 2005;4:1265–1272. doi: 10.1074/mcp.M500061-MCP200. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace