Compartmentalization of the proteasome-interacting proteins during sperm capacitation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
31467409
PubMed Central
PMC6715765
DOI
10.1038/s41598-019-49024-0
PII: 10.1038/s41598-019-49024-0
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- kapacitace spermií * MeSH
- prasata MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- proteomika MeSH
- spermie cytologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- ATP dependent 26S protease MeSH Prohlížeč
- proteasomový endopeptidasový komplex MeSH
Ubiquitination is a stable, reversible posttranslational modification of target proteins by covalent ligation of the small chaperone protein ubiquitin. Most commonly ubiquitination targets proteins for degradation/recycling by the 26S proteasome in a well-characterized enzymatic cascade. Studies using human and non-human mammalian spermatozoa revealed the role of the ubiquitin-proteasome system (UPS) in the regulation of fertilization, including sperm-zona pellucida (ZP) interactions as well as the early events of sperm capacitation, the remodeling of the sperm plasma membrane and acrosome, and for the acquisition of sperm fertilizing ability. The present study investigated the activity of UPS during in vitro capacitation of fresh boar spermatozoa in relation to changes in sperm proteome. Parallel and sequential treatments of ejaculated and capacitated spermatozoa under proteasome permissive/inhibiting conditions were used to isolate putative sperm proteasome-associated sperm proteins in a compartment-specific manner. A differential proteomic approach employing 1D PAGE revealed differences in accumulated proteins at the molecular weights of 60, 58, 49, and 35 kDa, and MS analysis revealed the accumulation of proteins previously reported as proteasome co-purifying proteins, as well as some novel proteins. Among others, P47/lactadherin, ACRBP, ADAM5, and SPINK2 (alias SAAI) were processed by the proteasome in a capacitation dependent manner. Furthermore, the capacitation-induced reorganization of the outer acrosomal membrane was slowed down in the presence of proteasomal inhibitors. These novel results support the proposed role of UPS in sperm capacitation and open several new lines of inquiry into sperm capacitation mechanism.
Department of Obstetrics Gynecology and Women's Health University of Missouri Columbia MO 65211 USA
Division of Animal Sciences University of Missouri Columbia MO 65211 USA
Zobrazit více v PubMed
Cooper, G. & Hausman, R. The cell: a molecular approach. Seventh edition edn, (Sinauer Associates, 2016).
Sutovsky P. Sperm proteasome and fertilization. Reproduction (Cambridge, England) 2011;142:1–14. doi: 10.1530/rep-11-0041. PubMed DOI
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological reviews. 2002;82:373–428. doi: 10.1152/physrev.00027.2001. PubMed DOI
Morales P, Diaz ES, Kong M. Proteasome activity and its relationship with protein phosphorylation during capacitation and acrosome reaction in human spermatozoa. Society of Reproduction and Fertility supplement. 2007;65:269–273. PubMed
Zimmerman SW, et al. Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization. PloS one. 2011;6:e17256. doi: 10.1371/journal.pone.0017256. PubMed DOI PMC
Sutovsky P, et al. Proteasomal interference prevents zona pellucida penetration and fertilization in mammals. Biology of reproduction. 2004;71:1625–1637. doi: 10.1095/biolreprod.104.032532. PubMed DOI
Yokota N, Sawada H. Sperm proteasomes are responsible for the acrosome reaction and sperm penetration of the vitelline envelope during fertilization of the sea urchin Pseudocentrotus depressus. Developmental biology. 2007;308:222–231. doi: 10.1016/j.ydbio.2007.05.025. PubMed DOI
Sasanami T, et al. Sperm proteasome degrades egg envelope glycoprotein ZP1 during fertilization of Japanese quail (Coturnix japonica) Reproduction (Cambridge, England) 2012;144:423–431. doi: 10.1530/rep-12-0165. PubMed DOI
Sawada, H., Pinto, M. R. & De Santis, R. Participation of sperm proteasome in fertilization of the phlebobranch ascidian Ciona intestinalis. Molecular reproduction and development50, 493–498, 10.1002/(sici)1098-2795(199808)50:4<493::aid-mrd13>3.0.co;2-3 (1998). PubMed
Zimmerman S, Sutovsky P. The sperm proteasome during sperm capacitation and fertilization. Journal of reproductive immunology. 2009;83:19–25. doi: 10.1016/j.jri.2009.07.006. PubMed DOI
Yi YJ, Manandhar G, Oko RJ, Breed WG, Sutovsky P. Mechanism of sperm-zona pellucida penetration during mammalian fertilization: 26S proteasome as a candidate egg coat lysin. Society of Reproduction and Fertility supplement. 2007;63:385–408. PubMed
Zigo M, Jonakova V, Manaskova-Postlerova P, Kerns K, Sutovsky P. Ubiquitin-proteasome system participates in the de-aggregation of spermadhesin and DQH protein during boar sperm capacitation. Reproduction (Cambridge, England) 2019 doi: 10.1530/rep-18-0413. PubMed DOI
Kerns K, Zigo M, Drobnis EZ, Sutovsky M, Sutovsky P. Zinc ion flux during mammalian sperm capacitation. Nature communications. 2018;9:2061. doi: 10.1038/s41467-018-04523-y. PubMed DOI PMC
Kerns K, Morales P, Sutovsky P. Regulation of Sperm Capacitation by the 26S Proteasome: An Emerging New Paradigm in Spermatology. Biology of reproduction. 2016;94:117. doi: 10.1095/biolreprod.115.136622. PubMed DOI
Austin CR. The capacitation of the mammalian sperm. Nature. 1952;170:326. doi: 10.1038/170326a0. PubMed DOI
Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 1951;168:697–698. doi: 10.1038/168697b0. PubMed DOI
Visconti PE, et al. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development (Cambridge, England) 1995;121:1129–1137. PubMed
Kong M, Diaz ES, Morales P. Participation of the human sperm proteasome in the capacitation process and its regulation by protein kinase A and tyrosine kinase. Biology of reproduction. 2009;80:1026–1035. doi: 10.1095/biolreprod.108.073924. PubMed DOI
Kongmanas K, et al. Proteomic Characterization of Pig Sperm Anterior Head Plasma Membrane Reveals Roles of Acrosomal Proteins in ZP3 Binding. Journal of cellular physiology. 2015;230:449–463. doi: 10.1002/jcp.24728. PubMed DOI
Redgrove KA, et al. Involvement of multimeric protein complexes in mediating the capacitation-dependent binding of human spermatozoa to homologous zonae pellucidae. Developmental biology. 2011;356:460–474. doi: 10.1016/j.ydbio.2011.05.674. PubMed DOI
Dun MD, et al. The chaperonin containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-oocyte interaction. The Journal of biological chemistry. 2011;286:36875–36887. doi: 10.1074/jbc.M110.188888. PubMed DOI PMC
Zigo M, Kerns K, Sutovsky M, Sutovsky P. Modifications of the 26S proteasome during boar sperm capacitation. Cell Tissue Res. 2018 doi: 10.1007/s00441-017-2786-6. PubMed DOI PMC
Hillman P, Ickowicz D, Vizel R, Breitbart H. Dissociation between AKAP3 and PKARII promotes AKAP3 degradation in sperm capacitation. PloS one. 2013;8:e68873. doi: 10.1371/journal.pone.0068873. PubMed DOI PMC
Yi YJ, et al. Ubiquitin-activating enzyme (UBA1) is required for sperm capacitation, acrosomal exocytosis and sperm-egg coat penetration during porcine fertilization. International journal of andrology. 2012;35:196–210. doi: 10.1111/j.1365-2605.2011.01217.x. PubMed DOI
Miles EL, et al. Transgenic pig carrying green fluorescent proteasomes. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:6334–6339. doi: 10.1073/pnas.1220910110. PubMed DOI PMC
Sanchez R, et al. Participation of the sperm proteasome during in vitro fertilisation and the acrosome reaction in cattle. Andrologia. 2011;43:114–120. doi: 10.1111/j.1439-0272.2009.01031.x. PubMed DOI
Flesch FM, Colenbrander B, van Golde LM, Gadella BM. Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochemical and biophysical research communications. 1999;262:787–792. doi: 10.1006/bbrc.1999.1300. PubMed DOI
Tardif S, Dube C, Chevalier S, Bailey JL. Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biology of reproduction. 2001;65:784–792. doi: 10.1095/biolreprod65.3.784. PubMed DOI
Ded L, Dostalova P, Dorosh A, Dvorakova-Hortova K, Peknicova J. Effect of estrogens on boar sperm capacitation in vitro. Reproductive biology and endocrinology: RB&E. 2010;8:87. doi: 10.1186/1477-7827-8-87. PubMed DOI PMC
Peknicova J, Moos J. Monoclonal antibodies against boar acrosomal antigens labelling undamaged acrosomes of spermatozoa in immunofluorescence test. Andrologia. 1990;22:427–435. doi: 10.1111/j.1439-0272.1990.tb02022.x. PubMed DOI
Baba T, et al. An acrosomal protein, sp32, in mammalian sperm is a binding protein specific for two proacrosins and an acrosin intermediate. The Journal of biological chemistry. 1994;269:10133–10140. PubMed
Yi YJ, et al. Interference with the 19S proteasomal regulatory complex subunit PSMD4 on the sperm surface inhibits sperm-zona pellucida penetration during porcine fertilization. Cell Tissue Res. 2010;341:325–340. doi: 10.1007/s00441-010-0988-2. PubMed DOI
Zigo M, Jonakova V, Sulc M, Manaskova-Postlerova P. Characterization of sperm surface protein patterns of ejaculated and capacitated boar sperm, with the detection of ZP binding candidates. Int J Biol Macromol. 2013;61:322–328. doi: 10.1016/j.ijbiomac.2013.07.014. PubMed DOI
Silva E, Frost D, Li L, Bovin N, Miller DJ. Lactadherin is a candidate oviduct Lewis X trisaccharide receptor on porcine spermatozoa. Andrology. 2017;5:589–597. doi: 10.1111/andr.12340. PubMed DOI PMC
Baba T, et al. Activation and maturation mechanisms of boar acrosin zymogen based on the deduced primary structure. The Journal of biological chemistry. 1989;264:11920–11927. PubMed
Baba T, Michikawa Y, Kawakura K, Arai Y. Activation of boar proacrosin is effected by processing at both N- and C-terminal portions of the zymogen molecule. FEBS letters. 1989;244:132–136. doi: 10.1016/0014-5793(89)81178-0. PubMed DOI
Parrish RF, Polakoski KL. Boar malpha-acrosin. Purification and characterization of the inital active enzyme resulting from the conversion of boar proacrosin to acrosin. The Journal of biological chemistry. 1978;253:8428–8432. PubMed
Polakoski KL, Parrish RF. Boar proacrosin. Purification and preliminary activation studies of proacrosin isolated from ejaculated boar sperm. The Journal of biological chemistry. 1977;252:1888–1894. PubMed
Signorelli J, Diaz ES, Morales P. Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res. 2012;349:765–782. doi: 10.1007/s00441-012-1370-3. PubMed DOI
Dube C, Beaulieu M, Reyes-Moreno C, Guillemette C, Bailey JL. Boar sperm storage capacity of BTS and Androhep Plus: viability, motility, capacitation, and tyrosine phosphorylation. Theriogenology. 2004;62:874–886. doi: 10.1016/j.theriogenology.2003.12.006. PubMed DOI
Krapf D, et al. Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. The Journal of biological chemistry. 2010;285:7977–7985. doi: 10.1074/jbc.M109.085845. PubMed DOI PMC
Jha KN, et al. Evidence for the involvement of proline-directed serine/threonine phosphorylation in sperm capacitation. Molecular human reproduction. 2006;12:781–789. doi: 10.1093/molehr/gal085. PubMed DOI
Tsai PS, Garcia-Gil N, van Haeften T, Gadella BM. How pig sperm prepares to fertilize: stable acrosome docking to the plasma membrane. PloS one. 2010;5:e11204. doi: 10.1371/journal.pone.0011204. PubMed DOI PMC
Ensslin M, et al. Molecular cloning and characterization of P47, a novel boar sperm-associated zona pellucida-binding protein homologous to a family of mammalian secretory proteins. Biology of reproduction. 1998;58:1057–1064. doi: 10.1095/biolreprod58.4.1057. PubMed DOI
Nagdas SK, Smith L, Medina-Ortiz I, Hernandez-Encarnacion L, Raychoudhury S. Identification of bovine sperm acrosomal proteins that interact with a 32-kDa acrosomal matrix protein. Molecular and cellular biochemistry. 2016;414:153–169. doi: 10.1007/s11010-016-2668-3. PubMed DOI PMC
Petrunkina AM, Lakamp A, Gentzel M, Ekhlasi-Hundrieser M, Topfer-Petersen E. Fate of lactadherin P47 during post-testicular maturation and capacitation of boar spermatozoa. Reproduction (Cambridge, England) 2003;125:377–387. doi: 10.1530/rep.0.1250377. PubMed DOI
Zigo M, et al. Panel of monoclonal antibodies to sperm surface proteins as a tool for monitoring localization and identification of sperm-zona pellucida receptors. Cell Tissue Res. 2015;359:895–908. doi: 10.1007/s00441-014-2072-9. PubMed DOI
Chakravarty S, Bansal P, Sutovsky P, Gupta SK. Role of proteasomal activity in the induction of acrosomal exocytosis in human spermatozoa. Reproductive biomedicine online. 2008;16:391–400. doi: 10.1016/S1472-6483(10)60601-3. PubMed DOI
Baba T, Michikawa Y, Kashiwabara S, Arai Y. Proacrosin activation in the presence of a 32-kDa protein from boar spermatozoa. Biochemical and biophysical research communications. 1989;160:1026–1032. doi: 10.1016/S0006-291X(89)80105-6. PubMed DOI
Dong HT, Shi WS, Tian Y, Cao LP, Jin Y. Expression and tyrosine phosphorylation of sp32 regulate the activation of the boar proacrosin/acrosin system. Genetics and molecular research: GMR. 2015;14:2374–2383. doi: 10.4238/2015.March.27.23. PubMed DOI
Kim T, et al. Expression and relationship of male reproductive ADAMs in mouse. Biology of reproduction. 2006;74:744–750. doi: 10.1095/biolreprod.105.048892. PubMed DOI
Davidova N, Jonakova V, Manaskova-Postlerova P. Expression and localization of acrosin inhibitor in boar reproductive tract. Cell Tissue Res. 2009;338:303–311. doi: 10.1007/s00441-009-0876-9. PubMed DOI
Jelinkova P, Manaskova P, Ticha M, Jonakova V. Proteinase inhibitors in aggregated forms of boar seminal plasma proteins. Int J Biol Macromol. 2003;32:99–107. doi: 10.1016/S0141-8130(03)00043-6. PubMed DOI
Jonakova V, et al. The complete primary structure of three isoforms of a boar sperm-associated acrosin inhibitor. FEBS letters. 1992;297:147–150. doi: 10.1016/0014-5793(92)80347-J. PubMed DOI
Kwok SC, Dai G, McMurtry JP. Molecular cloning and sequence analysis of the cDNA encoding porcine acrosin inhibitor. DNA and cell biology. 1994;13:389–394. doi: 10.1089/dna.1994.13.389. PubMed DOI
Manaskova-Postlerova P, et al. Acrosin inhibitor detection along the boar epididymis. Int J Biol Macromol. 2016;82:733–739. doi: 10.1016/j.ijbiomac.2015.10.034. PubMed DOI
Tschesche H, Kupfer S, Klauser R, Fink E, Fritz H. Structure, biochemistry and comparative aspects of mammalian seminal plasma acrosin inhibitors. Protides of the Biological Fluids. 1976;23:255–266.
Sanz L, Calvete JJ, Jonakova V, Topfer-Petersen E. Boar spermadhesins AQN-1 and AWN are sperm-associated acrosin inhibitor acceptor proteins. FEBS letters. 1992;300:63–66. doi: 10.1016/0014-5793(92)80164-C. PubMed DOI
Zaneveld LJ, Robertson RT, Kessler M, Williams WL. Inhibition of fertilization in vivo by pancreatic and seminal plasma trypsin inhibitors. Journal of reproduction and fertility. 1971;25:387–392. doi: 10.1530/jrf.0.0250387. PubMed DOI
Peknicova J, Moos J, Mollova M, Srsen V, Capkova J. Changes in immunochemical localisation of acrosomal and sperm proteins in boar spermatozoa during capacitation and induced acrosome reaction. Anim Reprod Sci. 1994;35:255–271. doi: 10.1016/0378-4320(94)90041-8. DOI
Jonakova V, Cechova D, Topfer-Petersen E, Calvete JJ, Veselsky L. Variability of acrosin inhibitors in boar reproductive tract. Biomedica biochimica acta. 1991;50:691–695. PubMed
Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chemistry & biology. 2001;8:739–758. doi: 10.1016/S1074-5521(01)00056-4. PubMed DOI
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. PubMed DOI PMC
Ishihama Y, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Molecular & cellular proteomics: MCP. 2005;4:1265–1272. doi: 10.1074/mcp.M500061-MCP200. PubMed DOI
Evidence of endogenously produced hydrogen sulfide (H2S) and persulfidation in male reproduction
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals