Effect of estrogens on boar sperm capacitation in vitro
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
20626847
PubMed Central
PMC2908632
DOI
10.1186/1477-7827-8-87
PII: 1477-7827-8-87
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- estradiol farmakologie MeSH
- estrogeny farmakologie MeSH
- fluorescence MeSH
- kapacitace spermií účinky léků fyziologie MeSH
- kultivované buňky MeSH
- počet spermií MeSH
- průtoková cytometrie MeSH
- Sus scrofa * fyziologie MeSH
- zona pellucida účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- estradiol MeSH
- estrogeny MeSH
BACKGROUND: Mammalian sperm must undergo a series of controlled molecular processes in the female reproductive tract called capacitation before they are capable of penetrating and fertilizing the egg. Capacitation, as a complex biological process, is influenced by many molecular factors, among which steroidal hormone estrogens play their role. Estrogens, present in a high concentration in the female reproductive tract are generally considered as primarily female hormones. However, there is increasing evidence of their important impact on male reproductive parameters. The purpose of this study is to investigate the effect of three natural estrogens such as estrone (E1), 17beta-estradiol (E2) and estriol (E3) as well as the synthetical one, 17 alpha-ethynylestradiol (EE2) on boar sperm capacitation in vitro. METHODS: Boar sperm were capacitated in vitro in presence of estrogens. Capacitation progress in control and experimental samples was analyzed by flow cytometry with the anti-acrosin monoclonal antibody (ACR.2) at selected times of incubation. Sperm samples were analyzed at 120 min of capacitation by CTC (chlortetracycline) assay, immunocytochemistry and flow cytometry with anti-acrosin ACR.2 antibody. Furthermore, sperm samples and capacitating media were analyzed by immunocytochemistry, ELISA with the ACR.2 antibody, and the acrosin activity assay after induced acrosomal reaction (AR). RESULTS: Estrogens stimulate sperm capacitation of boar sperm collected from different individuals. The stimulatory effect depends on capacitation time and is highly influenced by differences in the response to estrogens such as E2 by individual animals. Individual estrogens have relatively same effect on capacitation progress. In the boar samples with high estrogen responsiveness, estrogens stimulate the capacitation progress in a concentration-dependent manner. Furthermore, estrogens significantly increase the number of acrosome-reacted sperm after zona pellucida- induced acrosomal reaction. CONCLUSIONS: We demonstrate here the stimulatory effect of four different estrogens on boar sperm capacitation in vitro. According to our results, there is significant difference in the response to tested estrogens at different capacitation time and among individual animals. In animals with a high response to estrogens, there is a concentration-dependent stimulation of capacitation and individual estrogens have relatively the same effect. Effects of individual estrogens, differences in the response to them by individual animals, their time and concentration-dependent outcomes further contribute to our knowledge about steroidal action in sperm.
Zobrazit více v PubMed
Austin CR. Observation on penetration of sperm into the mammalian egg. Aust J Sci Res. 1951;4:581–596. PubMed
Austin CR. Capacitation of spermatozoa. Int J Fertil. 1967;12:25–31. PubMed
Chang MC. Ferilizing capacity of spermatozoa deposited into the Fallopian tubes. Nature. 1951;168:997–998. doi: 10.1038/168697b0. PubMed DOI
Hunter RH, Hall JP. Capacitation of boar spermatozoa: synergism between uterine and tubal environments. J Exp Zool. 1974;188(2):203–213. doi: 10.1002/jez.1401880208. PubMed DOI
Brown SM, Hamner CE. Capacitation of sperm in the female reproductive tract of the rabbit during estrus and pseudopregnancy. Fertil Steril. 1971;22(2):92–97. PubMed
Yanagimachi R. In vitro capacitation of hamster spermatozoa by follicular fluid. J Reprod Fertil. 1969;18(2):275–286. doi: 10.1530/jrf.0.0180275. PubMed DOI
Niwa K, Imai H, Kim CI, Iritani A. Fertilization in vitro of hamster and mouse eggs in a chemically defined medium. J Reprod Fertil. 1980;58(1):109–114. doi: 10.1530/jrf.0.0580109. PubMed DOI
Eddy EM, Washburn TF, Bunch DO, Goulding EH, Gladen BC, Lubahn DB, Korach KS. Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology. 1996;137(11):4796–4805. doi: 10.1210/en.137.11.4796. PubMed DOI
Acconcia F, Kumar R. Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett. 2006;8; 238(1):1–14. doi: 10.1016/j.canlet.2005.06.018. PubMed DOI
Aquila S, Sisci D, Gentile M, Middea E, Catalano S, Carpino A, Rago V, Andò S. Estrogen receptor (ER) alpha and ER beta are both expressed in human ejaculated spermatozoa: evidence of their direct interaction with phosphatidylinositol-3-OH kinase/Akt pathway. J Clin Endocrinol Metab. 2004;89(3):1443–1451. doi: 10.1210/jc.2003-031681. PubMed DOI
Naz RK, Sellamuthu R. Receptors in spermatozoa: are they real? J Androl. 2006;27(5):627–636. doi: 10.2164/jandrol.106.000620. PubMed DOI
Rago V, Aquila S, Panza R, Carpino A. Cytochrome P450arom, androgen and estrogen receptors in pig sperm. Reprod Biol Endocrinol. 2007;5:23. doi: 10.1186/1477-7827-5-23. PubMed DOI PMC
Luconi M, Francavilla F, Porazzi I, Macerola B, Forti G, Baldi E. Human spermatozoa as a model for studying membrane receptors mediating rapid nongenomic effects of progesterone and estrogens. Steroids. 2004;69(8-9):553–559. doi: 10.1016/j.steroids.2004.05.013. PubMed DOI
Gwatkin RB, Williams DT. Inhibition of Sperm Capacitation in vitro by Contraceptive Steroids. Nature. 1970;227(5254):182–183. doi: 10.1038/227182a0. PubMed DOI
Briggs MH. Steroid hormones and the fertilizing capacity of spermatozoa. Steroids. 1973;22(4):547–553. doi: 10.1016/0039-128X(73)90010-X. PubMed DOI
Bathla H, Guraya SS, Sangha GK. Role of estradiol in the capacitation and acrosome reaction of hamster epididymal spermatozoa in the isolated uterus of mice incubated in vitro. Indian J Physiol Pharmacol. 1999;43(2):211–217. PubMed
Hamner CE, Wilson LA Jr. Inhibition of capacitation in the rabbit. Fertil Steril. 1972;23(3):196–200. PubMed
Adeoya-Osiguwa SA, Markoulaki S, Pocock V, Milligan SR, Fraser LR. 17beta-Estradiol and environmental estrogens significantly affect mammalian sperm function. Hum Reprod. 2003;18(1):100–107. doi: 10.1093/humrep/deg037. PubMed DOI
Francavilla F, Romano R, Pandolfi C, Macerola B, Santucci R, Necozione S, Francavilla S. Evaluation of the effect of 17alphaOH-progesterone and 17beta-oestradiol on human sperm ability to fuse with oocytes: comparison and possible interference with the effect of progesterone. Int J Androl. 2003;26(6):342–347. doi: 10.1111/j.1365-2605.2003.00435.x. PubMed DOI
Wang WH, Abeydeera LR, Fraser LR, Niwa K. Functional analysis using chlortetracycline fluorescence and in vitro fertilization of frozen-thawed ejaculated boar spermatozoa incubated in a protein-free chemically defined medium. J Reprod Fertil. 1995;104(2):305–313. doi: 10.1530/jrf.0.1040305. PubMed DOI
Fraser LR, Abeydeera LR, Niwa K. Ca(2+)-regulating mechanisms that modulate bull sperm capacitation and acrosomal exocytosis as determined by chlortetracycline analysis. Mol Reprod Dev. 1995;40(2):233–241. doi: 10.1002/mrd.1080400213. PubMed DOI
Peknicová J, Moos J. Monoclonal antibodies against boar acrosomal antigens labelling undamaged acrosomes of spermatozoa in immunofluorescence test. Andrologia. 1990;22(5):427–435. PubMed
Peknicova J, Moos J, Mollova M, Srsen V, Capkova J. Changes in immunochemical localisation of acrosomal and sperm proteins in boar spermatozoa during capacitation and induced acrosome reaction. Anim Repr Sci. 1994;35:255–271. doi: 10.1016/0378-4320(94)90041-8. DOI
De Jonge C. Biological basis for human capacitation. Hum Reprod Update. 2005;11(3):205–214. doi: 10.1093/humupd/dmi010. PubMed DOI
Baldi E, Luconi M, Muratori M, Marchiani S, Tamburrino L, Forti G. Nongenomic activation of spermatozoa by steroid hormones: facts and fictions. Mol Cell Endocrinol. 2009;308(1-2):39–46. doi: 10.1016/j.mce.2009.02.006. PubMed DOI
Nawata H, Chong MT, Bronzert D, Lippman ME. Estradiol-independent growth of a subline of MCF-7 human breast cancer cells in culture. J Biol Chem. 1981;256(13):6895–902. PubMed
Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, Tong W, Shi L, Perkins R, Sheehan DM. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci. 2000. pp. 138–153. PubMed DOI
Nishimura I, Ui-Tei K, Saigo K, Ishii H, Sakuma Y, Kato M. 17-Estradiol at Physiological Concentrations Augments Ca2+-Activated K+ Currents via Estrogen Receptor in the gonadotropin-Releasing Hormone Neuronal Cell Line GT1-7. Endocrinology. 2008;149(2):774–782. doi: 10.1210/en.2007-0759. PubMed DOI
Tarlatzis BC, Pazaitou K, Bili H, Bontis J, Papadimas J, Lagos S, Spanos E, Mantalenakis S. Growth hormone, oestradiol, progesterone and testosterone concentrations in follicular fluid after ovarian stimulation with various regimes for assisted reproduction. Hum Reprod. 1993;8(10):1612–1616. PubMed
Ouellette Y, Price CA, Carrière PD. Follicular fluid concentration of transforming growth factor-beta1 is negatively correlated with estradiol and follicle size at the early stage of development of the first-wave cohort of bovine ovarian follicles. Domest Anim Endocrinol. 2005;29(4):623–633. doi: 10.1016/j.domaniend.2005.04.008. PubMed DOI
17α-Ethynylestradiol alters testicular epigenetic profiles and histone-to-protamine exchange in mice
Fluorescent analysis of boar sperm capacitation process in vitro
Compartmentalization of the proteasome-interacting proteins during sperm capacitation
New Insight into Sperm Capacitation: A Novel Mechanism of 17β-Estradiol Signalling