σI from Bacillus subtilis: Impact on Gene Expression and Characterization of σI-Dependent Transcription That Requires New Types of Promoters with Extended -35 and -10 Elements

. 2018 Sep 01 ; 200 (17) : . [epub] 20180810

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29914988

The σI sigma factor from Bacillus subtilis is a σ factor associated with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here, we provide a comprehensive characterization of this transcriptional regulator. By transcriptome sequencing (RNA-seq) of wild-type (wt) and σI-null strains at 37°C and 52°C, we identified ∼130 genes affected by the absence of σI Further analysis revealed that the majority of these genes were affected indirectly by σI The σI regulon, i.e., the genes directly regulated by σI, consists of 16 genes, of which eight (the dhb and yku operons) are involved in iron metabolism. The involvement of σI in iron metabolism was confirmed phenotypically. Next, we set up an in vitro transcription system and defined and experimentally validated the promoter sequence logo that, in addition to -35 and -10 regions, also contains extended -35 and -10 motifs. Thus, σI-dependent promoters are relatively information rich in comparison with most other promoters. In summary, this study supplies information about the least-explored σ factor from the industrially important model organism B. subtilisIMPORTANCE In bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons (i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σI regulon from the industrially important model Gram-positive bacterium Bacillus subtilis We reveal that σI affects expression of ∼130 genes, of which 16 are directly regulated by σI, including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σI-dependent transcription. This study thus provides a comprehensive view on this underexplored component of the B. subtilis transcription machinery.

Zobrazit více v PubMed

Barvík I, Rejman D, Panova N, Šanderová H, Krásný L. 2017. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol Rev 41:131–138. doi:10.1093/femsre/fuw041. PubMed DOI

Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA, Ebright RH, Severinov K. 2001. Bacterial RNA polymerase subunit ω and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci U S A 98:892–897. doi:10.1073/pnas.98.3.892. PubMed DOI PMC

Weiss A, Moore BD, Tremblay MHJ, Chaput D, Kremer A, Shaw LN. 2017. The ω subunit governs RNA polymerase stability and transcriptional specificity in Staphylococcus aureus. J Bacteriol 199:e00459-. doi:10.1128/JB.00459-16. PubMed DOI PMC

Lopez de Saro FJ, Woody AYM, Helmann JD. 1995. Structural analysis of the Bacillus subtilis δ factor: a protein polyanion which displaces RNA from RNA polymerase. J Mol Biol 252:189–202. doi:10.1006/jmbi.1995.0487. PubMed DOI

Rabatinová A, Šanderová H, Matějčková JJ, Korelusová J, Sojka L, Barvík I, Veronika PapouŠková Sklenár V, Žídek L, Krásný L. 2013. The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol 195:2603–2611. doi:10.1128/JB.00188-13. PubMed DOI PMC

Prajapati RK, Sengupta S, Rudra P, Mukhopadhyay J. 2016. Bacillus subtilis δ functions as a transcriptional regulator by facilitating the open complex formation. J Biol Chem 291:1064–1075. doi:10.1074/jbc.M115.686170. PubMed DOI PMC

Burgess RR. 1969. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem 244:6168–6176. PubMed

Paget MS. 2015. Bacterial σ factors and anti-σ factors: structure, function and distribution. Biomolecules 5:1245–1265. doi:10.3390/biom5031245. PubMed DOI PMC

Dombroski AJ, Walter WA, Record MT, Slegele DA, Gross CA. 1992. Polypeptides containing highly conserved regions of transcription initiation factor σ70 exhibit specificity of binding to promoter DNA. Cell 70:501–512. doi:10.1016/0092-8674(92)90174-B. PubMed DOI

Dombroski AJ, Walter WA, Gross CA. 1993. Amino-terminal amino acids modulate σ factor DNA-binding activity. Genes Dev 7:2446–2455. doi:10.1101/gad.7.12a.2446. PubMed DOI

Gruber TM, Gross CA. 2003. Multiple σ subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466. doi:10.1146/annurev.micro.57.030502.090913. PubMed DOI

Helmann JD. 2016. Bacillus subtilis extracytoplasmic function (ECF) σ factors and defense of the cell envelope. Curr Opin Microbiol 30:122–132. doi:10.1016/j.mib.2016.02.002. PubMed DOI PMC

Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Härtig E, Harwood CR, Homuth G, Jarmer H. 2012. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335:1103–1106. doi:10.1126/science.1206848. PubMed DOI

McDonnell GE, Wood H, Devine KM, Mcconnell DJ. 1994. Genetic control of bacterial suicide: regulation of the induction of PBSX in Bacillus subtilis. J Bacteriol 176:5820–5830. doi:10.1128/jb.176.18.5820-5830.1994. PubMed DOI PMC

Zuber U, Drzewiecki K, Hecker M. 2001. Putative sigma factor SigI (YkoZ) of Bacillus subtilis is induced by heat shock. J Bacteriol 183:1472–1475. doi:10.1128/JB.183.4.1472-1475.2001. PubMed DOI PMC

Asai K, Ootsuji T, Obata K, Matsumoto T, Fujita Y, Sadaie Y. 2007. Regulatory role of RsgI in σI expression in Bacillus subtilis. Microbiology 153:92–101. doi:10.1099/mic.0.29239-0. PubMed DOI

Salzberg LI, Powell L, Hokamp K, Botella E, Noone D, Devine KM. 2013. The WalRK (YycFG) and σI RsgI regulators cooperate to control CwlO and LytE expression in exponentially growing and stressed Bacillus subtilis cells. Mol Microbiol 87:180–195. doi:10.1111/mmi.12092. PubMed DOI

Liu TY, Chu SH, Hu YN, Wang JJ, Shaw GC. 2017. Genetic evidence that multiple proteases are involved in modulation of heat-induced activation of the sigma factor SigI in Bacillus subtilis. FEMS Microbiol Lett 364:fnx054. doi:10.1093/femsle/fnx054. PubMed DOI

Huang WZ, Wang JJ, Chen HJ, Chen JT, Shaw GC. 2013. The heat-inducible essential response regulator WalR positively regulates transcription of sigI, mreBH and lytE in Bacillus subtilis under heat stress. Res Microbiol 164:998–1008. doi:10.1016/j.resmic.2013.10.003. PubMed DOI

Schirner K, Errington J. 2009. The cell wall regulator σI specifically suppresses the lethal phenotype of mbl mutants in Bacillus subtilis. J Bacteriol 191:1404–1413. doi:10.1128/JB.01497-08. PubMed DOI PMC

Tseng C-L, Shaw G-C. 2008. Genetic evidence for the actin homolog gene mreBH and the bacitracin resistance gene bcrC as targets of the alternative sigma factor SigI of Bacillus subtilis. J Bacteriol 190:1561–1567. doi:10.1128/JB.01497-07. PubMed DOI PMC

Tseng C-L, Chen J-T, Lin J-H, Huang W-Z, Shaw G-C. 2011. Genetic evidence for involvement of the alternative sigma factor SigI in controlling expression of the cell wall hydrolase gene lytE and contribution of LytE to heat survival of Bacillus subtilis. Arch Microbiol 193:677–685. doi:10.1007/s00203-011-0710-0. PubMed DOI

Dubrac S, Bisicchia P, Devine KM, Msadek T. 2008. A matter of life and death: Cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 70:1307–1322. doi:10.1111/j.1365-2958.2008.06483.x. PubMed DOI

Podlesek Z, Comino A, Herzog-Velikonja B, Zgur-Bertok D, Komel RGM. 1995. Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance. Mol Microbiol 16:969–976. doi:10.1111/j.1365-2958.1995.tb02322.x. PubMed DOI

Cao M, Moore CM, Helmann JD. 2005. Bacillus subtilis paraquat resistance is directed by σM, an extracytoplasmic function σ factor, and is conferred by YqjL and BcrC. J Bacteriol 187:2948–2956. doi:10.1128/JB.187.9.2948-2956.2005. PubMed DOI PMC

Cao M, Helmann JD. 2002. Regulation of the Bacillus subtilis bcrC bacitracin resistance gene by two extracytoplasmic function σ factors. J Bacteriol 184:6123–6129. doi:10.1128/JB.184.22.6123-6129.2002. PubMed DOI PMC

Carballido-López R, Formstone A, Li Y, Ehrlich SD, Noirot P, Errington J. 2006. Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. Dev Cell 11:399–409. doi:10.1016/j.devcel.2006.07.017. PubMed DOI

Soufo HJD, Graumann PL. 2003. Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr Biol 13:1916–1920. doi:10.1016/j.cub.2003.10.024. PubMed DOI

Kawai Y, Asai K, Errington J. 2009. Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of Bacillus subtilis. Mol Microbiol 73:719–731. doi:10.1111/j.1365-2958.2009.06805.x. PubMed DOI

Jones LJF, Carballido-López R, Errington J. 2001. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922. doi:10.1016/S0092-8674(01)00287-2. PubMed DOI

Margot P, Wahlen M, Gholamhuseinian A, Piggot P, Karamata D. 1998. The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J Bacteriol 180:749–752. PubMed PMC

Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine KM. 2007. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 65:180–200. doi:10.1111/j.1365-2958.2007.05782.x. PubMed DOI

Hashimoto M, Ooiwa S, Sekiguchi J. 2012. Synthetic lethality of the lytE cwlO genotype in Bacillus subtilis is caused by lack of D, l-endopeptidase activity at the lateral cell wall. J Bacteriol 194:796–803. doi:10.1128/JB.05569-11. PubMed DOI PMC

Völker U, Engelmann S, Maul B, Riethdorf S, Völker A, Schmid R, Mach H, Hecker M. 1994. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140:741–752. doi:10.1099/00221287-140-4-741. PubMed DOI

Mueller JP, Bukusoglu G, Sonenshein AL. 1992. Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system. J Bacteriol 174:4361–4373. doi:10.1128/jb.174.13.4361-4373.1992. PubMed DOI PMC

Muñoz-Gutiérrez I, Ortiz de Ora L, Rozman Grinberg I, Garty Y, Bayer EA, Shoham Y, Lamed R, Borovok I. 2016. Decoding biomass-sensing regulons of Clostridium thermocellum alternative sigma-I factors in a heterologous Bacillus subtilis host system. PLoS One 11:e0146316. doi:10.1371/journal.pone.0146316. PubMed DOI PMC

Jarmer H, Larsen TS, Krogh A, Saxild HH, Brunak S, Knudsen S. 2001. σA recognition sites in the Bacillus subtilis genome. Microbiology 147:2417–2424. doi:10.1099/00221287-147-9-2417. PubMed DOI

Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K, Charowhas C, Clark K, Dicuccio M, Dondoshansky I, Federhen S, Feolo M, Funk K, Geer LY, Gorelenkov V, Hoeppner M, Holmes B, Johnson M, Khotomlianski V, Kimchi A, Kimelman M, Kitts P, Klimke W, Krasnov S, Kuznetsov A, Landrum MJ, Landsman D, Lee JM, Lipman DJ, Lu Z, Madden TL, Madej T, Marchler-Bauer A, Karsch-Mizrachi I, Murphy T, Orris R, Ostell J, O'sullivan C, Panchenko A, Phan L, Preuss D, Pruitt KD, Rodarmer K, Rubinstein W, Sayers E, Schneider V, Schuler GD, Sherry ST, Sirotkin K, Siyan K, Slotta D, Soboleva A, Soussov V, Starchenko G, Tatusova TA, Todorov K, Trawick BW, Vakatov D, Wang Y, Ward M, Wilbur WJ, Yaschenko E, Zbicz K. 2016. Database resources of the national center for biotechnology information. Nucleic Acids Res 44:D7–D19. doi:10.1093/nar/gkv1290. PubMed DOI PMC

May JJ, Wendrich TM, Marahiel MA. 2001. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276:7209–7217. doi:10.1074/jbc.M009140200. PubMed DOI

Baichoo N, Wang T, Ye R, Helmann JD. 2002. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol Microbiol 45:1613–1629. doi:10.1046/j.1365-2958.2002.03113.x. PubMed DOI

Heath RJ, Su N, Murphy CK, Rock CO. 2000. The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis. J Biol Chem 275:40128–40133. doi:10.1074/jbc.M005611200. PubMed DOI

Hook-Barnard IG, Hinton DM. 2009. The promoter spacer influences transcription initiation via σ70 region 1.1 of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 106:737–742. doi:10.1073/pnas.0808133106. PubMed DOI PMC

Gaballa A, Guariglia-Oropeza V, Dürr F, Butcher BG, Chen AY, Chandrangsu P, Helmann JD. 2018. Modulation of extracytoplasmic function (ECF) sigma factor promoter selectivity by spacer region sequence. Nucleic Acids Res 46:134–145. doi:10.1093/nar/gkx953. PubMed DOI PMC

Voskuil MI, Chambliss GH. 1998. The −16 region of Bacillus subtilis and other Gram-positive bacterial promoters. Nucleic Acids Res 26:3584–3590. doi:10.1093/nar/26.15.3584. PubMed DOI PMC

Ruff E, Record M, Artsimovitch I. 2015. Initial events in bacterial transcription initiation. Biomolecules 5:1035–1062. doi:10.3390/biom5021035. PubMed DOI PMC

Mitchell JE, Zheng D, Busby SJW, Minchin SD. 2003. Identification and analysis of “extended −10” promoters in Escherichia coli. Nucleic Acids Res 31:4689–4695. doi:10.1093/nar/gkg694. PubMed DOI PMC

Johnson S, Chen YJ, Phillips R. 2013. Poly(dA:dT)-rich DNAs are highly flexible in the context of DNA looping. PLoS One 8:e75799. doi:10.1371/journal.pone.0075799. PubMed DOI PMC

Okonogi TM, Alley SC, Reese AW, Hopkins PB, Robinson BH. 2002. Sequence-dependent dynamics of duplex DNA: the applicability of a dinucleotide model. Biophys J 83:3446–3459. doi:10.1016/S0006-3495(02)75344-7. PubMed DOI PMC

Helmann JD. 1995. Compilation and analysis of Bacillus subtilis σA-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 23:2351–2360. doi:10.1093/nar/23.13.2351. PubMed DOI PMC

Thompson J, Pikis A, Ruvinov SB, Henrissat B, Yamamoto H, Sekiguchi J. 1998. The gene glvA of Bacillus subtilis 168 encodes a metal-requiring, NAD(H)-dependent 6-phospho-α-glucosidase. J Biol Chem 273:27347–27356. doi:10.1074/jbc.273.42.27347. PubMed DOI

Carlsson P, Hederstedt L. 1989. Genetic characterization of Bacillus subtilis odhA and odhB, encoding 2-oxoglutarate dehydrogenase and dihydrolipoamide transsuccinylase, respectively. J Bacteriol 171:3667–3672. doi:10.1128/jb.171.7.3667-3672.1989. PubMed DOI PMC

Domínguez-Cuevas P, Porcelli I, Daniel RA, Errington J. 2013. Differentiated roles for MreB-actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. Mol Microbiol 89:1084–1098. doi:10.1111/mmi.12335. PubMed DOI PMC

Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JCD. 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194:686–701. doi:10.1128/JB.06112-11. PubMed DOI PMC

O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. doi:10.1093/nar/gkv1189. PubMed DOI PMC

Kim JGY, Wilson AC. 2016. Loss of σI affects heat-shock response and virulence gene expression in Bacillus anthracis. Microbiology 162:564–574. doi:10.1099/mic.0.000236. PubMed DOI

Mašek J, Machoň O, Kořínek V, Taketo MM, Kozmik Z. 2016. Tcf7l1 protects the anterior neural fold from adopting the neural crest fate. Development 143:2206–2216. doi:10.1242/dev.132357. PubMed DOI

Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580. doi:10.1016/S0022-2836(83)80284-8. PubMed DOI

Dubnau D, Davidoff-Abelson R. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis: I. Formation and properties of the donor-recipient complex. J Mol Biol 56:209–221. PubMed

Seydlová G, Pohl R, Zborníková E, Ehn M, Šimák O, Panova N, Kolář M, Bogdanová K, Večeřová R, Fišer R, Šanderová H, Vítovská D, Sudzinová P, Pospíšil J, Benada O, Křížek T, Sedlák D, Bartůněk P, Krásný L, Rejman D. 2017. Lipophosphonoxins II: design, synthesis, and properties of novel broad spectrum antibacterial agents. J Med Chem 60:6098–6118. doi:10.1021/acs.jmedchem.7b00355. PubMed DOI

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup . 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC

Okonechnikov K, Conesa A, García-Alcalde F. 2016. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32:292–294. doi:10.1093/bioinformatics/btv566. PubMed DOI PMC

Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. doi:10.1093/bib/bbs017. PubMed DOI PMC

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi:10.1186/s13059-014-0550-8. PubMed DOI PMC

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Corrada Bravo H, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Ole AK, Pages H, Reyes A, MM. 2015. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12:115–121. doi:10.1038/nmeth.3252. PubMed DOI PMC

Qi Y, Hulett FM. 1998. Pho∼P and RNA polymerase σA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP∼P activator sites within the coding region stimulate transcription in vitro. Mol Microbiol 28:1187–1197. doi:10.1046/j.1365-2958.1998.00882.x. PubMed DOI

Chang B, Doi R. 1990. Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase σA factor. J Bacteriol 172:3257-3263. doi:10.1128/jb.172.6.3257-3263.1990. PubMed DOI PMC

Juang Y-L, Helmann JD. 1994. A promoter melting region in the primary σ factor of Bacillus subtilis. J Mol Biol 235:1470–1488. doi:10.1006/jmbi.1994.1102. PubMed DOI

Edgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340. PubMed DOI PMC

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi:10.1093/bioinformatics/btp033. PubMed DOI PMC

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771. doi:10.1080/10635150802429642. PubMed DOI

Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O'Reilly M, O'Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JFML, Sekiguchi J, Sekowska A, Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N. 2003. Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683. doi:10.1073/pnas.0730515100. PubMed DOI PMC

Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann AB, Rudner DZ, Allen KN, Typas A, Gross CA. 2017. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst 4:291–305. doi:10.1016/j.cels.2016.12.013. PubMed DOI PMC

Ross W, Thompson JF, Newlands JT, Gourse RL. 1990. E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 9:3733–3742. PubMed PMC

Krásný L, Gourse RL. 2004. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J 23:4473–4483. doi:10.1038/sj.emboj.7600423. PubMed DOI PMC

Kolasa IK, Łoziński T, Wierzchowski KL. 2003. Effects of distortions by A-tracts of promoter B-DNA spacer region on the kinetics of open complex formation by Escherichia coli RNA polymerase. Acta Biochim Pol 50:909–920. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...