σI from Bacillus subtilis: Impact on Gene Expression and Characterization of σI-Dependent Transcription That Requires New Types of Promoters with Extended -35 and -10 Elements
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29914988
PubMed Central
PMC6088155
DOI
10.1128/jb.00251-18
PII: JB.00251-18
Knihovny.cz E-zdroje
- Klíčová slova
- RNA-seq, RNAP, iron metabolism, promoter, sigma factor,
- MeSH
- Bacillus subtilis genetika MeSH
- bakteriální proteiny genetika metabolismus MeSH
- DNA řízené RNA-polymerasy genetika MeSH
- genetická transkripce * MeSH
- operon MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u bakterií * MeSH
- regulon MeSH
- sigma faktor genetika MeSH
- transkriptom MeSH
- železo metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA řízené RNA-polymerasy MeSH
- sigma faktor MeSH
- železo MeSH
The σI sigma factor from Bacillus subtilis is a σ factor associated with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here, we provide a comprehensive characterization of this transcriptional regulator. By transcriptome sequencing (RNA-seq) of wild-type (wt) and σI-null strains at 37°C and 52°C, we identified ∼130 genes affected by the absence of σI Further analysis revealed that the majority of these genes were affected indirectly by σI The σI regulon, i.e., the genes directly regulated by σI, consists of 16 genes, of which eight (the dhb and yku operons) are involved in iron metabolism. The involvement of σI in iron metabolism was confirmed phenotypically. Next, we set up an in vitro transcription system and defined and experimentally validated the promoter sequence logo that, in addition to -35 and -10 regions, also contains extended -35 and -10 motifs. Thus, σI-dependent promoters are relatively information rich in comparison with most other promoters. In summary, this study supplies information about the least-explored σ factor from the industrially important model organism B. subtilisIMPORTANCE In bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons (i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σI regulon from the industrially important model Gram-positive bacterium Bacillus subtilis We reveal that σI affects expression of ∼130 genes, of which 16 are directly regulated by σI, including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σI-dependent transcription. This study thus provides a comprehensive view on this underexplored component of the B. subtilis transcription machinery.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Barvík I, Rejman D, Panova N, Šanderová H, Krásný L. 2017. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol Rev 41:131–138. doi: 10.1093/femsre/fuw041. PubMed DOI
Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA, Ebright RH, Severinov K. 2001. Bacterial RNA polymerase subunit ω and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci U S A 98:892–897. doi: 10.1073/pnas.98.3.892. PubMed DOI PMC
Weiss A, Moore BD, Tremblay MHJ, Chaput D, Kremer A, Shaw LN. 2017. The ω subunit governs RNA polymerase stability and transcriptional specificity in PubMed DOI PMC
Lopez de Saro FJ, Woody AYM, Helmann JD. 1995. Structural analysis of the PubMed DOI
Rabatinová A, Šanderová H, Matějčková JJ, Korelusová J, Sojka L, Barvík I, Veronika PapouŠková Sklenár V, Žídek L, Krásný L. 2013. The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J Bacteriol 195:2603–2611. doi: 10.1128/JB.00188-13. PubMed DOI PMC
Prajapati RK, Sengupta S, Rudra P, Mukhopadhyay J. 2016. PubMed DOI PMC
Burgess RR. 1969. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem 244:6168–6176. PubMed
Paget MS. 2015. Bacterial σ factors and anti-σ factors: structure, function and distribution. Biomolecules 5:1245–1265. doi: 10.3390/biom5031245. PubMed DOI PMC
Dombroski AJ, Walter WA, Record MT, Slegele DA, Gross CA. 1992. Polypeptides containing highly conserved regions of transcription initiation factor σ PubMed DOI
Dombroski AJ, Walter WA, Gross CA. 1993. Amino-terminal amino acids modulate σ factor DNA-binding activity. Genes Dev 7:2446–2455. doi: 10.1101/gad.7.12a.2446. PubMed DOI
Gruber TM, Gross CA. 2003. Multiple σ subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466. doi: 10.1146/annurev.micro.57.030502.090913. PubMed DOI
Helmann JD. 2016. PubMed DOI PMC
Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, Becher D, Bisicchia P, Botella E, Delumeau O, Doherty G, Denham EL, Fogg MJ, Fromion V, Goelzer A, Hansen A, Härtig E, Harwood CR, Homuth G, Jarmer H. 2012. Condition-dependent transcriptome reveals high-level regulatory architecture in PubMed DOI
McDonnell GE, Wood H, Devine KM, Mcconnell DJ. 1994. Genetic control of bacterial suicide: regulation of the induction of PBSX in PubMed DOI PMC
Zuber U, Drzewiecki K, Hecker M. 2001. Putative sigma factor SigI (YkoZ) of PubMed DOI PMC
Asai K, Ootsuji T, Obata K, Matsumoto T, Fujita Y, Sadaie Y. 2007. Regulatory role of RsgI in σ PubMed DOI
Salzberg LI, Powell L, Hokamp K, Botella E, Noone D, Devine KM. 2013. The WalRK (YycFG) and σ PubMed DOI
Liu TY, Chu SH, Hu YN, Wang JJ, Shaw GC. 2017. Genetic evidence that multiple proteases are involved in modulation of heat-induced activation of the sigma factor SigI in PubMed DOI
Huang WZ, Wang JJ, Chen HJ, Chen JT, Shaw GC. 2013. The heat-inducible essential response regulator WalR positively regulates transcription of PubMed DOI
Schirner K, Errington J. 2009. The cell wall regulator σ PubMed DOI PMC
Tseng C-L, Shaw G-C. 2008. Genetic evidence for the actin homolog gene PubMed DOI PMC
Tseng C-L, Chen J-T, Lin J-H, Huang W-Z, Shaw G-C. 2011. Genetic evidence for involvement of the alternative sigma factor SigI in controlling expression of the cell wall hydrolase gene PubMed DOI
Dubrac S, Bisicchia P, Devine KM, Msadek T. 2008. A matter of life and death: Cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 70:1307–1322. doi: 10.1111/j.1365-2958.2008.06483.x. PubMed DOI
Podlesek Z, Comino A, Herzog-Velikonja B, Zgur-Bertok D, Komel RGM. 1995. PubMed DOI
Cao M, Moore CM, Helmann JD. 2005. PubMed DOI PMC
Cao M, Helmann JD. 2002. Regulation of the PubMed DOI PMC
Carballido-López R, Formstone A, Li Y, Ehrlich SD, Noirot P, Errington J. 2006. Actin homolog MreBH governs cell morphogenesis by localization of the cell wall hydrolase LytE. Dev Cell 11:399–409. doi: 10.1016/j.devcel.2006.07.017. PubMed DOI
Soufo HJD, Graumann PL. 2003. Actin-like proteins MreB and Mbl from PubMed DOI
Kawai Y, Asai K, Errington J. 2009. Partial functional redundancy of MreB isoforms, MreB, Mbl and MreBH, in cell morphogenesis of PubMed DOI
Jones LJF, Carballido-López R, Errington J. 2001. Control of cell shape in bacteria: helical, actin-like filaments in PubMed DOI
Margot P, Wahlen M, Gholamhuseinian A, Piggot P, Karamata D. 1998. The PubMed PMC
Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine KM. 2007. The essential YycFG two-component system controls cell wall metabolism in PubMed DOI
Hashimoto M, Ooiwa S, Sekiguchi J. 2012. Synthetic lethality of the PubMed DOI PMC
Völker U, Engelmann S, Maul B, Riethdorf S, Völker A, Schmid R, Mach H, Hecker M. 1994. Analysis of the induction of general stress proteins of PubMed DOI
Mueller JP, Bukusoglu G, Sonenshein AL. 1992. Transcriptional regulation of PubMed DOI PMC
Muñoz-Gutiérrez I, Ortiz de Ora L, Rozman Grinberg I, Garty Y, Bayer EA, Shoham Y, Lamed R, Borovok I. 2016. Decoding biomass-sensing regulons of PubMed DOI PMC
Jarmer H, Larsen TS, Krogh A, Saxild HH, Brunak S, Knudsen S. 2001. σ PubMed DOI
Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K, Charowhas C, Clark K, Dicuccio M, Dondoshansky I, Federhen S, Feolo M, Funk K, Geer LY, Gorelenkov V, Hoeppner M, Holmes B, Johnson M, Khotomlianski V, Kimchi A, Kimelman M, Kitts P, Klimke W, Krasnov S, Kuznetsov A, Landrum MJ, Landsman D, Lee JM, Lipman DJ, Lu Z, Madden TL, Madej T, Marchler-Bauer A, Karsch-Mizrachi I, Murphy T, Orris R, Ostell J, O'sullivan C, Panchenko A, Phan L, Preuss D, Pruitt KD, Rodarmer K, Rubinstein W, Sayers E, Schneider V, Schuler GD, Sherry ST, Sirotkin K, Siyan K, Slotta D, Soboleva A, Soussov V, Starchenko G, Tatusova TA, Todorov K, Trawick BW, Vakatov D, Wang Y, Ward M, Wilbur WJ, Yaschenko E, Zbicz K. 2016. Database resources of the national center for biotechnology information. Nucleic Acids Res 44:D7–D19. doi: 10.1093/nar/gkv1290. PubMed DOI PMC
May JJ, Wendrich TM, Marahiel MA. 2001. The PubMed DOI
Baichoo N, Wang T, Ye R, Helmann JD. 2002. Global analysis of the PubMed DOI
Heath RJ, Su N, Murphy CK, Rock CO. 2000. The enoyl-[acyl-carrier-protein] reductases FabI and FabL from PubMed DOI
Hook-Barnard IG, Hinton DM. 2009. The promoter spacer influences transcription initiation via σ PubMed DOI PMC
Gaballa A, Guariglia-Oropeza V, Dürr F, Butcher BG, Chen AY, Chandrangsu P, Helmann JD. 2018. Modulation of extracytoplasmic function (ECF) sigma factor promoter selectivity by spacer region sequence. Nucleic Acids Res 46:134–145. doi: 10.1093/nar/gkx953. PubMed DOI PMC
Voskuil MI, Chambliss GH. 1998. The −16 region of PubMed DOI PMC
Ruff E, Record M, Artsimovitch I. 2015. Initial events in bacterial transcription initiation. Biomolecules 5:1035–1062. doi: 10.3390/biom5021035. PubMed DOI PMC
Mitchell JE, Zheng D, Busby SJW, Minchin SD. 2003. Identification and analysis of “extended −10” promoters in PubMed DOI PMC
Johnson S, Chen YJ, Phillips R. 2013. Poly(dA:dT)-rich DNAs are highly flexible in the context of DNA looping. PLoS One 8:e75799. doi: 10.1371/journal.pone.0075799. PubMed DOI PMC
Okonogi TM, Alley SC, Reese AW, Hopkins PB, Robinson BH. 2002. Sequence-dependent dynamics of duplex DNA: the applicability of a dinucleotide model. Biophys J 83:3446–3459. doi: 10.1016/S0006-3495(02)75344-7. PubMed DOI PMC
Helmann JD. 1995. Compilation and analysis of PubMed DOI PMC
Thompson J, Pikis A, Ruvinov SB, Henrissat B, Yamamoto H, Sekiguchi J. 1998. The gene PubMed DOI
Carlsson P, Hederstedt L. 1989. Genetic characterization of PubMed DOI PMC
Domínguez-Cuevas P, Porcelli I, Daniel RA, Errington J. 2013. Differentiated roles for MreB-actin isologues and autolytic enzymes in PubMed DOI PMC
Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JCD. 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194:686–701. doi: 10.1128/JB.06112-11. PubMed DOI PMC
O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC
Kim JGY, Wilson AC. 2016. Loss of σ PubMed DOI
Mašek J, Machoň O, Kořínek V, Taketo MM, Kozmik Z. 2016. Tcf7l1 protects the anterior neural fold from adopting the neural crest fate. Development 143:2206–2216. doi: 10.1242/dev.132357. PubMed DOI
Hanahan D. 1983. Studies on transformation of PubMed DOI
Dubnau D, Davidoff-Abelson R. 1971. Fate of transforming DNA following uptake by competent PubMed
Seydlová G, Pohl R, Zborníková E, Ehn M, Šimák O, Panova N, Kolář M, Bogdanová K, Večeřová R, Fišer R, Šanderová H, Vítovská D, Sudzinová P, Pospíšil J, Benada O, Křížek T, Sedlák D, Bartůněk P, Krásný L, Rejman D. 2017. Lipophosphonoxins II: design, synthesis, and properties of novel broad spectrum antibacterial agents. J Med Chem 60:6098–6118. doi: 10.1021/acs.jmedchem.7b00355. PubMed DOI
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup . 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Okonechnikov K, Conesa A, García-Alcalde F. 2016. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32:292–294. doi: 10.1093/bioinformatics/btv566. PubMed DOI PMC
Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Corrada Bravo H, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Ole AK, Pages H, Reyes A, MM. 2015. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12:115–121. doi: 10.1038/nmeth.3252. PubMed DOI PMC
Qi Y, Hulett FM. 1998. Pho∼P and RNA polymerase σ PubMed DOI
Chang B, Doi R. 1990. Overproduction, purification, and characterization of PubMed DOI PMC
Juang Y-L, Helmann JD. 1994. A promoter melting region in the primary σ factor of PubMed DOI
Edgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC
Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771. doi: 10.1080/10635150802429642. PubMed DOI
Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O'Reilly M, O'Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JFML, Sekiguchi J, Sekowska A, Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N. 2003. Essential PubMed DOI PMC
Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann AB, Rudner DZ, Allen KN, Typas A, Gross CA. 2017. Construction and analysis of two genome-scale deletion libraries for PubMed DOI PMC
Ross W, Thompson JF, Newlands JT, Gourse RL. 1990. PubMed PMC
Krásný L, Gourse RL. 2004. An alternative strategy for bacterial ribosome synthesis: PubMed DOI PMC
Kolasa IK, Łoziński T, Wierzchowski KL. 2003. Effects of distortions by A-tracts of promoter B-DNA spacer region on the kinetics of open complex formation by PubMed