The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell

. 2013 Jun ; 195 (11) : 2603-11. [epub] 20130329

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23543716

RNA polymerase (RNAP) is an extensively studied multisubunit enzyme required for transcription of DNA into RNA, yet the δ subunit of RNAP remains an enigmatic protein whose physiological roles have not been fully elucidated. Here, we identify a novel, so far unrecognized function of δ from Bacillus subtilis. We demonstrate that δ affects the regulation of RNAP by the concentration of the initiating nucleoside triphosphate ([iNTP]), an important mechanism crucial for rapid changes in gene expression in response to environmental changes. Consequently, we demonstrate that δ is essential for cell survival when facing a competing strain in a changing environment. Hence, although δ is not essential per se, it is vital for the cell's ability to rapidly adapt and survive in nature. Finally, we show that two other proteins, GreA and YdeB, previously implicated to affect regulation of RNAP by [iNTP] in other organisms, do not have this function in B. subtilis.

Zobrazit více v PubMed

Helmann JD. 2009. RNA polymerase: a nexus of gene regulation. Methods 47:1–5 PubMed PMC

Murakami KS, Darst SA. 2003. Bacterial RNA polymerases: the Wholo story. Curr. Opin. Struct. Biol. 13:31–39 PubMed

Pero J, Nelson J, Fox TD. 1975. Highly asymmetric transcription by RNA-polymerase containing phage-Sp01-induced polypeptides and a new host protein. Proc. Natl. Acad. Sci. U. S. A. 72:1589–1593 PubMed PMC

Tjian R, Losick R, Pero J, Hinnebush A. 1977. Purification and comparative properties of delta and sigma subunits of RNA-polymerase from Bacillus subtilis. Eur. J. Biochemistry 74:149–154 PubMed

Lampe M, Binnie C, Schmidt R, Losick R. 1988. Cloned gene encoding the delta subunit of Bacillus subtilis RNA polymerase. Gene 67:13–19 PubMed

Lopez de Saro FJ, Woody AY, Helmann JD. 1995. Structural analysis of the Bacillus subtilis delta factor: a protein polyanion which displaces RNA from RNA polymerase. J. Mol. Biol. 252:189–202 PubMed

Motackova V, Sanderova H, Zidek L, Novacek J, Padrta P, Svenkova A, Korelusova J, Jonak J, Krasny L, Sklenar V. 2010. Solution structure of the N-terminal domain of Bacillus subtilis delta subunit of RNA polymerase and its classification based on structural homologs. Proteins 78:1807–1810 PubMed

Doherty GP, Fogg MJ, Wilkinson AJ, Lewis PJ. 2010. Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition. Microbiology 156:3532–3543 PubMed

Achberger EC, Whiteley HR. 1981. The role of the delta peptide of the Bacillus subtilis RNA polymerase in promoter selection. J. Biol. Chem. 256:7424–7432 PubMed

Dobinson KF, Spiegelman GB. 1987. Effect of the delta-subunit of Bacillus subtilis RNA polymerase on initiation of RNA synthesis at 2 bacteriophage phi-29 promoters. Biochemistry 26:8206–8213 PubMed

Juang YL, Helmann JD. 1994. The delta subunit of Bacillus subtilis RNA polymerase, an allosteric effector of the initiation and core-recycling phases of transcription. J. Mol. Biol. 239:1–14 PubMed

Lopez de Saro FJ, Yoshikawa N, Helmann JD. 1999. Expression, abundance, and RNA polymerase binding properties of the delta factor of Bacillus subtilis. J. Biol. Chem. 274:15953–15958 PubMed

Liu CG, Heath LS, Turnbough CL. 1994. Regulation of pyrbi operon expression in Escherichia coli by UTP-sensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev. 8:2904–2912 PubMed

Liu J, Turnbough CL. 1994. Effects of transcriptional start site sequence and position on nucleotide-sensitive selection of alternative start sites at the pyrC promoter in Escherichia coli. J. Bacteriol. 176:2938–2945 PubMed PMC

Schwartz M, Neuhard J. 1975. Control of expression of pyr genes in Salmonella typhimurium—effects of variations in uridine and cytidine nucleotide pools. J. Bacteriol. 121:814–822 PubMed PMC

Sorensen KI, Baker KE, Kelln RA, Neuhard J. 1993. Nucleotide pool-sensitive selection of the transcriptional start site in vivo at the Salmonella typhimurium pyrC and pyrD promoters. J. Bacteriol. 175:4137–4144 PubMed PMC

Walker KA, Mallik P, Pratt TS, Osuna R. 2004. The Escherichia coli Fis promoter is regulated by changes in the levels of its transcription initiation nucleotide CTP. J. Biol. Chem. 279:50818–50828 PubMed

Gaal T, Bartlett MS, Ross W, Turnbough CL, Jr, Gourse RL. 1997. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278:2092–2097 PubMed

Revyakin A, Ebright RH, Strick TR. 2004. Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proc. Natl. Acad. Sci. U. S. A. 101:4776–4780 PubMed PMC

Krasny L, Gourse RL. 2004. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 23:4473–4483 PubMed PMC

Lopez JM, Dromerick A, Freese E. 1981. Response of guanosine 5′-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J. Bacteriol. 146:605–613 PubMed PMC

Murray HD, Schneider DA, Gourse RL. 2003. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell 12:125–134 PubMed

Ochi K, Kandala J, Freese E. 1982. Evidence that Bacillus subtilis sporulation induced by the stringent response is caused by the decrease in GTP or GDP. J. Bacteriol. 151:1062–1065 PubMed PMC

Qi Y, Hulett FM. 1998. PhoP Similar to P and RNA polymerase sigma(A) holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP Similar to P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 28:1187–1197 PubMed

Guerout-Fleury AM, Frandsen N, Stragier P. 1996. Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57–61 PubMed

Ross W, Thompson JF, Newlands JT, Gourse RL. 1990. Escherichia coli Fis protein activates ribosomal-RNA transcription in vitro and in vivo. EMBO J. 9:3733–3742 PubMed PMC

Lewis PJ, Marston AL. 1999. GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene 227:101–110 PubMed

Sojka L, Kouba T, Barvik I, Sanderova H, Maderova Z, Jonak J, Krasny L. 2011. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res. 39:4598–4611 PubMed PMC

Chang BY, Doi RH. 1990. Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase sigma A factor. J. Bacteriol. 172:3257–3263 PubMed PMC

Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557–580 PubMed

Dubnau D, Davidoff-Abelson R. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. J. Mol. Biol. 56:209–221 PubMed

Sanderova H, Tiserova H, Barvik I, Sojka L, Jonak J, Krasny L. 2010. The N-terminal region is crucial for the thermostability of the G-domain of Bacillus stearothermophilus EF-Tu. Biochim. Biophys. Acta 1804:147–155 PubMed

Barker MM, Gaal T, Josaitis CA, Gourse RL. 2001. Mechanism of regulation of transcription initiation by PpGpp. I. Effects of PpGpp on transcription initiation in vivo and in vitro. J. Mol. Biol. 305:673–688 PubMed

Jendresen CB, Kilstrup M, Martinussen J. 2011. A simplified method for rapid quantification of intracellular nucleoside triphosphates by one-dimensional thin-layer chromatography. Anal. Biochem. 409:249–259 PubMed

Whipple FW, Sonenshein AL. 1992. Mechanism of initiation of transcription by Bacillus subtilis RNA polymerase at several promoters. J. Mol. Biol. 223:399–414 PubMed

Krasny L, Tiserova H, Jonak J, Rejman D, Sanderova H. 2008. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol. 69:42–54 PubMed

Saecker RM, Record MT, Jr, DeHaseth PL. 2011. Mechanism of bacterial transcription initiation: RNA polymerase-promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412:754–771 PubMed PMC

Natori Y, Tagami K, Murakami K, Yoshida S, Tanigawa O, Moh Y, Masuda K, Wada T, Suzuki S, Nanamiya H, Tozawa Y, Kawamura F. 2009. Transcription activity of individual Rrn operons in Bacillus subtilis mutants deficient in(p) PpGpp synthetase genes, RelA, YjbM, and YwaC. J. Bacteriol. 191:4555–4561 PubMed PMC

Gourse RL, Gaal T, Bartlett MS, Appleman JA, Ross W. 1996. rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. Annu. Rev. Microbiol. 50:645–677 PubMed

Murray HD, Gourse RL. 2004. Unique roles of the Rrn P2 RRNA promoters in Escherichia coli. Mol. Microbiol. 52:1375–1387 PubMed

Paul BJ, Barker MM, Ross W, Schneider DA, Webb C, Foster JW, Gourse RL. 2004. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of RRNA promoters by PpGpp and the initiating NTP. Cell 118:311–322 PubMed

Perederina A, Svetlov V, Vassylyeva MN, Tahirov TH, Yokoyama S, Artsimovitch I, Vassylyev DG. 2004. Regulation through the secondary channel–structural framework for PpGpp-DksA synergism during transcription. Cell 118:297–309 PubMed

Toulme F, Mosrin-Huaman C, Sparkowski J, Das A, Leng M, Rahmouni AR. 2000. GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J. 19:6853–6859 PubMed PMC

Rutherford ST, Lemke JJ, Vrentas CE, Gaal T, Ross W, Gourse RL. 2007. Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. J. Mol. Biol. 366:1243–1257 PubMed PMC

Stallings CL, Stephanou NC, Chu L, Hochschild A, Nickels BE, Glickman MS. 2009. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 138:146–159 PubMed PMC

Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, Rendon S, Chen R, Tu BP, Wang JD. 2012. Direct Regulation of GTP homeostasis by (p)PpGpp: a critical component of viability and stress resistance. Mol. Cell 48:231–241 PubMed PMC

Seepersaud R, Needham RH, Kim CS, Jones AL. 2006. Abundance of the delta subunit of RNA polymerase is linked to the virulence of Streptococcus agalactiae. J. Bacteriol. 188:2096–2105 PubMed PMC

Watson SP, Antonio M, Foster SJ. 1998. Isolation and characterization of Staphylococcus aureus starvation-induced, stationary-phase mutants defective in survival or recovery. Microbiology 144(Part 11):3159–3169 PubMed

Tojo S, Satomura T, Kumamoto K, Hirooka K, Fujita Y. 2008. Molecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids. J. Bacteriol. 190:6134–6147 PubMed PMC

Tojo S, Kumamoto K, Hirooka K, Fujita Y. 2010. Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis. J. Bacteriol. 192:1573–1585 PubMed PMC

Xue X, Tomasch J, Sztajer H, Wagner-Dobler I. 2010. The delta subunit of RNA polymerase, RpoE, is a global modulator of Streptococcus mutans environmental adaptation. J. Bacteriol. 192:5081–5092 PubMed PMC

Chen YF, Helmann JD. 1997. DNA-melting at the Bacillus subtilis flagellin promoter nucleates near −10 and expands unidirectionally. J. Mol. Biol. 267:47–59 PubMed

Kuehner JN, Brow DA. 2008. Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol. Cell 31:201–211 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

What the Hel: recent advances in understanding rifampicin resistance in bacteria

. 2023 Nov 01 ; 47 (6) : .

Convergent views on disordered protein dynamics from NMR and computational approaches

. 2022 Oct 18 ; 121 (20) : 3785-3794. [epub] 20220921

NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins

. 2022 May 25 ; 122 (10) : 9331-9356. [epub] 20220421

Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis

. 2021 Jul 09 ; 49 (12) : 7088-7102.

Kinetic Modeling and Meta-Analysis of the Bacillus subtilis SigB Regulon during Spore Germination and Outgrowth

. 2021 Jan 05 ; 9 (1) : . [epub] 20210105

Choice of Force Field for Proteins Containing Structured and Intrinsically Disordered Regions

. 2020 Apr 07 ; 118 (7) : 1621-1633. [epub] 20200229

Boosting the resolution of low-field [Formula: see text] relaxation experiments on intrinsically disordered proteins with triple-resonance NMR

. 2020 Mar ; 74 (2-3) : 139-145. [epub] 20200120

σI from Bacillus subtilis: Impact on Gene Expression and Characterization of σI-Dependent Transcription That Requires New Types of Promoters with Extended -35 and -10 Elements

. 2018 Sep 01 ; 200 (17) : . [epub] 20180810

Solution structure of domain 1.1 of the σA factor from Bacillus subtilis is preformed for binding to the RNA polymerase core

. 2017 Jul 14 ; 292 (28) : 11610-11617. [epub] 20170524

Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases

. 2016 Apr 20 ; 44 (7) : 3000-12. [epub] 20160321

ε, a new subunit of RNA polymerase found in gram-positive bacteria

. 2014 Oct ; 196 (20) : 3622-32. [epub] 20140804

Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis

. 2014 Apr ; 42 (8) : 5151-63. [epub] 20140211

Spectral density mapping protocols for analysis of molecular motions in disordered proteins

. 2014 Mar ; 58 (3) : 193-207. [epub] 20140211

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace