Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis

. 2011 Jun ; 39 (11) : 4598-611. [epub] 20110207

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21303765

In bacteria, rapid changes in gene expression can be achieved by affecting the activity of RNA polymerase with small molecule effectors during transcription initiation. An important small molecule effector is the initiating nucleoside triphosphate (iNTP). At some promoters, an increasing iNTP concentration stimulates promoter activity, while a decreasing concentration has the opposite effect. Ribosomal RNA (rRNA) promoters from Gram-positive Bacillus subtilis are regulated by the concentration of their iNTP. Yet, the sequences of these promoters do not emulate the sequence characteristics of [iNTP]-regulated rRNA promoters of Gram-negative Escherichia coli. Here, we identified the 3'-promoter region, corresponding to the transcription bubble, as key for B. subtilis rRNA promoter regulation via the concentration of the iNTP. Within this region, the conserved -5T (3 bp downstream from the -10 hexamer) is required for this regulation. Moreover, we identified a second class of [iNTP]-regulated promoters in B. subtilis where the sequence determinants are not limited to the transcription bubble region. Overall, it seems that various sequence combinations can result in promoter regulation by [iNTP] in B. subtilis. Finally, this study demonstrates how the same type of regulation can be achieved with strikingly different promoter sequences in phylogenetically distant species.

Zobrazit více v PubMed

Sørensen KI, Baker KE, Kelln RA, Neuhard J. Nucleotide pool-sensitive selection of the transcriptional start site in vivo at the Salmonella typhimurium pyrC and pyrD promoters. J. Bacteriol. 1993;175:4137–4144. PubMed PMC

Walker KA, Mallik P, Pratt TS, Osuna R. The Escherichia coli Fis promoter is regulated by changes in the levels of its transcription initiation nucleotide CTP. J. Biol. Chem. 2004;279:50818–50828. PubMed

Liu C, Heath LS, Turnbough CL. Regulation of pyrBI operon expression in Escherichia coli by UTP-sensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev. 1994;8:2904–2912. PubMed

Liu J, Turnbough CL. Effects of transcriptional start site sequence and position on nucleotide-sensitive selection of alternative start sites at the pyrC promoter in Escherichia coli. J. Bacteriol. 1994;176:2938–2945. PubMed PMC

Schwartz M, Neuhard J. Control of expression of the pyr genes in Salmonella typhimurium: effects of variations in uridine and cytidine nucleotide pools. J. Bacteriol. 1975;121:814–822. PubMed PMC

Kuehner JN, Brow DA. Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol. Cell. 2008;31:201–211. PubMed

Thiebaut M, Colin J, Neil H, Jacquier A, Séraphin B, Lacroute F, Libri D. Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol. Cell. 2008;31:671–682. PubMed

Amiott EA, Jaehning JA. Sensitivity of the yeast mitochondrial RNA polymerase to +1 and +2 initiating nucleotides. J. Biol. Chem. 2006;281:34982–34988. PubMed

Helmann JD, DeHaseth PL. Protein-nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners. Biochemistry. 1999;38:5959–5967. PubMed

Paul BJ, Ross W, Gaal T, Gourse RL. rRNA transcription in Escherichia coli. Annu. Rev. Genet. 2004;38:749–770. PubMed

Haugen SP, Ross W, Gourse RL. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol. 2008;6:507–519. PubMed PMC

Gaal T, Bartlett MS, Ross W, Turnbough CL, Gourse RL. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science. 1997;278:2092–2097. PubMed

Revyakin A, Ebright RH, Strick TR. Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proc. Natl Acad. Sci. USA. 2004;101:4776–4780. PubMed PMC

Krásný L, Tišerová H, Jonák J, Rejman D, Šanderová H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol. 2008;69:42–54. PubMed

Murray HD, Schneider DA, Gourse RL. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell. 2003;12:125–134. PubMed

Henkin TM, Sonenshein AL. Mutations of the Escherichia coli lacUV5 promoter resulting in increased expression in Bacillus subtilis. Mol. Gen. Genet. 1987;209:467–474. PubMed

Hirvonen CA, Ross W, Wozniak CE, Marasco E, Anthony JR, Aiyar SE, Newburn VH, Gourse RL. Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli. J. Bacteriol. 2001;183:6305–6314. PubMed PMC

Haugen SP, Berkmen MB, Ross W, Gaal T, Ward C, Gourse RL. rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell. 2006;125:1069–1082. PubMed

Haugen SP, Ross W, Manrique M, Gourse RL. Fine structure of the promoter—sigma region 1.2 interaction. Proc. Natl Acad. Sci. USA. 2008;2007:2–7. PubMed PMC

Gaal T, Barkei J, Dickson RR, DeBoer HA, DeHaseth PL, Alavi H, Gourse RL. Saturation mutagenesis of an Escherichia coli rRNA promoter and initial characterization of promoter variants. J. Bacteriol. 1989;171:4852–4861. PubMed PMC

Krásný L, Gourse RL. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 2004;23:4473–4483. PubMed PMC

Natori Y, Tagami K, Murakami K, Yoshida S, Tanigawa O, Moh Y, Masuda K, Wada T, Suzuki S, Nanamiya H, et al. Transcription activity of individual rrn operons in Bacillus subtilis mutants deficient in (p)ppGpp synthetase genes, relA, yjbM, and ywaC. J. Bacteriol. 2009;191:4555–4561. PubMed PMC

Lopez JM, Dromerick A, Freese E. Response of guanosine 5′-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J. Bacteriol. 1981;146:605–613. PubMed PMC

Tojo S, Kumamoto K, Hirooka K, Fujita Y. Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis. J. Bacteriol. 2010;192:1573–1585. PubMed PMC

Tojo S, Satomura T, Kumamoto K, Hirooka K, Fujita Y. Molecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids. J. Bacteriol. 2008;190:6134–6147. PubMed PMC

Ross W, Thompson JF, Newlands JT, Gourse RL. E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J. 1990;9:3733–3742. PubMed PMC

Guérout-Fleury A, Frandsen N, Stragier P. Plasmids for ectopic integration on Bacillus subtilis. Gene. 1996;180:57–61. PubMed

Mitani T, Heinze JE, Freese E. Induction of sporulation in Bacillus subtilis by decoyinine and hadacidin. Biochem. Biophys. Res. Commun. 1977;77:1118–1125. PubMed

Qi Y, Hulett FM. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 1998;28:1187–1197. PubMed

Chang BY, Doi RH. Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase sigma A factor. J. Bacteriol. 1990;172:3257–3263. PubMed PMC

Juang Y-L, Helmann JD. A promoter melting region in the primary sigma factor of Bacillus subtilis. J. Mol. Biol. 1994;235:1470–1488. PubMed

Barker MM, Gaal T, Josaitis CA, Gourse RL. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol. 2001;305:673–688. PubMed

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. PubMed PMC

Schneider DA, Murray HD, Gourse RL. Measuring control of transcription initiation by changing concentrations of nucleotides and their derivatives. Methods Enzymol. 2003;370:606–617. PubMed

Johnston EB, Lewis PJ, Griffith R. The interaction of Bacillus subtilis sigmaA with RNA polymerase. Protein Sci. 2009;18:2287–2297. PubMed PMC

Hudson BP, Quispe J, Lara-González S, Kim Y, Berman HM, Arnold E, Ebright RH, Lawson CL. Three-dimensional EM structure of an intact activator-dependent transcription initiation complex. Proc. Natl Acad. Sci. USA. 2009;106:19830–19835. PubMed PMC

Widom RL, Jarvis ED, LaFauci G, Rudner R. Instability of rRNA operons in Bacillus subtilis. J. Bacteriol. 1988;170:605–610. PubMed PMC

Henkin TM. Ribosomes, protein synthesis factors, and tRNA synthetases. In: Sonenshein AL, Hoch JA, Losick R, editors. Bacillus subtilis and Its Closest Relatives: From Genes to Cells. Washington, DC: American Society for Microbiology; 2002. pp. 313–322.

Fukushima T, Ishikawa S, Yamamoto H, Ogasawara N, Sekiguchi J. Transcriptional, functional and cytochemical analyses of the veg gene in Bacillus subtilis. J. Biochem. 2003;133:475–483. PubMed

Le Grice SF, Shin CC, Whipple F, Sonenshein AL. Separation and analysis of the RNA polymerase binding sites of a complex Bacillus subtilis promoter. Mol. Gen. Genet. 1986;204:229–236. PubMed

Barker MM, Gourse RL. Regulation of rRNA transcription correlates with nucleoside triphosphate sensing. J. Bacteriol. 2001;183:6315–6323. PubMed PMC

Ward JB, Zahler SA. Genetic studies of leucine biosynthesis in Bacillus subtilis. J. Bacteriol. 1973;116:719–726. PubMed PMC

Eymann C, Homuth G, Scharf C, Hecker M. Bacillus subtilis functional genomics : global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 2002;184:2500–2520. PubMed PMC

Wipat A, Carter N, Brignell SC, Guy BJ, Piper K, Sanders J, Emmerson PT, Harwood CR. The dnaB-pheA (256°-240°) region of the Bacillus subtilis chromosome containing genes responsible for stress responses , the utilization of plant cell walls and primary metabolism. Microbiology. 1996;142:3067–3078. PubMed

Choonee N, Even S, Zig L, Putzer H. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Nucleic Acids Res. 2007;35:1578–1588. PubMed PMC

Hove-Jensen B. Identification of tms-26 as an allele of the gcaD gene, which encodes N-acetylglucosamine 1-phosphate uridyltransferase in Bacillus subtilis. J. Bacteriol. 1992;174:6852–6856. PubMed PMC

Wolf M. Phylogeny of Firmicutes with special reference to Mycoplasma (Mollicutes) as inferred from phosphoglycerate kinase amino acid sequence data. Int. J. Syst. Evol. Microbiol. 2004;54:871–875. PubMed

Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007;71:495–548. PubMed PMC

Yap WH, Wang Y. Molecular cloning and comparative sequence analyses of rRNA operons in Streptomyces nodosus ATCC 14899. Gene. 1999;232:77–85. PubMed

Gonzalez-y-Merchand JA, Colstonl MJ, Cox RA, Hill M, Nw L. The rRNA operons of Mycobacterium smegmatis and Mycobacterium tuberculosis: comparison of promoter elements and of neighbouring upstream genes. Microbiology. 1996;142:667–674. PubMed

Naryshkin N, Revyakin A, Kim Y, Mekler V, Ebright RH. Structural organization of the RNA polymerase-promoter open complex. Cell. 2000;101:601–611. PubMed

Camacho A, Salas M. Effect of mutations in the “extended -10” motif of three Bacillus subtilis sigmaA-RNA polymerase-dependent promoters. J. Mol. Biol. 1999;286:683–693. PubMed

Voskuil MI, Chambliss GH. The -16 region of Bacillus subtilis and other gram-positive bacterial promoters. Nucleic Acids Res. 1998;26:3584–3590. PubMed PMC

Voskuil MI, Chambliss GH. The TRTGn motif stabilizes the transcription initiation open complex. J. Mol. Biol. 2002;322:521–532. PubMed

Helmann JD. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res. 1995;23:2351–2360. PubMed PMC

Whipple FW, Sonenshein AL. Mechanism of initiation of transcription by Bacillus subtilis RNA polymerase at several promoters. J. Mol. Biol. 1992;223:399–414. PubMed

Ishikawa S, Oshima T, Kurokawa K, Kusuya Y, Ogasawara N. RNA polymerase trafficking in Bacillus subtilis cells. J. Bacteriol. 2010;192:5778–5787. PubMed PMC

Artsimovitch I, Svetlov V, Murakami KS, Landick R. Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J. Biol. Chem. 2003;278:12344–12355. PubMed

Grandoni JA, Zahler SA, Calvo JM. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. J. Bacteriol. 1992;174:3212–3219. PubMed PMC

Mader U, Hennig S, Hecker M, Homuth G. Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes. J. Bacteriol. 2004;186:2240–2252. PubMed PMC

Shivers RP, Sonenshein AL. Bacillus subtilis ilvB operon: an intersection of global regulons. Mol. Microbiol. 2005;56:1549–1559. PubMed

Tojo S, Satomura T, Morisaki K, Yoshida K, Hirooka K, Fujita Y. Negative Transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA. J. Bacteriol. 2004;186:7971–7979. PubMed PMC

Tojo S, Satomura T, Morisaki K, Deutscher J, Hirooka K, Fujita Y. Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA. Mol. Microbiol. 2005;56:1560–1573. PubMed

Rutherford ST, Lemke JJ, Vrentas CE, Gaal T, Ross W, Gourse RL. Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanism of factors that bind in the secondary channel of RNA polymerase. J. Mol. Biol. 2007;366:1243–1257. PubMed PMC

Roberts JW, Shankar S, Filter JJ. RNA polymerase elongation factors. Annu. Rev. Microbiol. 2008;62:211–233. PubMed PMC

Rutherford ST, Villers CL, Lee J-H, Ross W, Gourse RL. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev. 2009:236–248. PubMed PMC

Potrykus K, Vinella D, Murphy H, Szalewska-Palasz A, D’Ari R, Cashel M. Antagonistic regulation of Escherichia coli ribosomal RNA rrnB P1 promoter activity by GreA and DksA. J. Biol. Chem. 2006;281:15238–15248. PubMed

Motáčková V, Šanderová H, Žídek L, Nováček J, Padrta P, Švenková A, Korelusová J, Jonák J, Krásný L, Sklenář V. Solution structure of the N-terminal domain of Bacillus subtilis delta subunit of RNA polymerase and its classification based on structural homologs. Proteins. 2010;78:1807–1810. PubMed

López de Saro FJ, Yoshikawa N, Helmann JD. Expression, abundance, and RNA polymerase binding properties of the delta factor of Bacillus subtilis. J. Biol. Chem. 1999;274:15953–15958. PubMed

Doherty G, Fogg M, Wilkinson A, Lewis P. Small subunits of RNA polymerase: localisation, levels and implications for core enzyme composition. Microbiology. 2010;156:3532–3543. PubMed

Doherty GP, Meredith DH, Lewis PJ. Subcellular partitioning of transcription factors in Bacillus subtilis. J. Bacteriol. 2006;188:4101–4110. PubMed PMC

Xue X, Tomasch J, Sztajer H, Wagner-Döbler I. The delta subunit of RNA polymerase, RpoE, is a global modulator of Streptococcus mutans environmental adaptation. J. Bacteriol. 2010;192:5081–5092. PubMed PMC

Achberger EC, Whiteley HR. The role of the delta peptide of the Bacillus subtilis RNA polymerase in promoter selection. J. Biol. Chem. 1981;256:7424–7432. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mycobacterial HelD connects RNA polymerase recycling with transcription initiation

. 2024 Oct 09 ; 15 (1) : 8740. [epub] 20241009

Homologues of epigenetic pyrimidines: 5-alkyl-, 5-hydroxyalkyl and 5-acyluracil and -cytosine nucleotides: synthesis, enzymatic incorporation into DNA and effect on transcription with bacterial RNA polymerase

. 2022 Aug 03 ; 3 (8) : 1069-1075. [epub] 20220630

Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis

. 2021 Jul 09 ; 49 (12) : 7088-7102.

Kinetic Modeling and Meta-Analysis of the Bacillus subtilis SigB Regulon during Spore Germination and Outgrowth

. 2021 Jan 05 ; 9 (1) : . [epub] 20210105

Effects of DNA Topology on Transcription from rRNA Promoters in Bacillus subtilis

. 2021 Jan 01 ; 9 (1) : . [epub] 20210101

Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes

. 2020 Dec ; 16 (12) : e1009282. [epub] 20201230

Switching transcription with bacterial RNA polymerase through photocaging, photorelease and phosphorylation reactions in the major groove of DNA

. 2019 Apr 14 ; 10 (14) : 3937-3942. [epub] 20190304

The Core and Holoenzyme Forms of RNA Polymerase from Mycobacterium smegmatis

. 2019 Feb 15 ; 201 (4) : . [epub] 20190128

Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases

. 2016 Apr 20 ; 44 (7) : 3000-12. [epub] 20160321

Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins

. 2015 ; 10 (12) : e0145918. [epub] 20151230

The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell

. 2013 Jun ; 195 (11) : 2603-11. [epub] 20130329

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...