Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21303765
PubMed Central
PMC3113569
DOI
10.1093/nar/gkr032
PII: gkr032
Knihovny.cz E-zdroje
- MeSH
- Bacillus subtilis genetika metabolismus MeSH
- DNA bakterií chemie MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- Escherichia coli enzymologie MeSH
- genetická transkripce * MeSH
- geny rRNA MeSH
- kinetika MeSH
- nukleotidy metabolismus MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u bakterií * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
- DNA řízené RNA-polymerasy MeSH
- nukleotidy MeSH
In bacteria, rapid changes in gene expression can be achieved by affecting the activity of RNA polymerase with small molecule effectors during transcription initiation. An important small molecule effector is the initiating nucleoside triphosphate (iNTP). At some promoters, an increasing iNTP concentration stimulates promoter activity, while a decreasing concentration has the opposite effect. Ribosomal RNA (rRNA) promoters from Gram-positive Bacillus subtilis are regulated by the concentration of their iNTP. Yet, the sequences of these promoters do not emulate the sequence characteristics of [iNTP]-regulated rRNA promoters of Gram-negative Escherichia coli. Here, we identified the 3'-promoter region, corresponding to the transcription bubble, as key for B. subtilis rRNA promoter regulation via the concentration of the iNTP. Within this region, the conserved -5T (3 bp downstream from the -10 hexamer) is required for this regulation. Moreover, we identified a second class of [iNTP]-regulated promoters in B. subtilis where the sequence determinants are not limited to the transcription bubble region. Overall, it seems that various sequence combinations can result in promoter regulation by [iNTP] in B. subtilis. Finally, this study demonstrates how the same type of regulation can be achieved with strikingly different promoter sequences in phylogenetically distant species.
Zobrazit více v PubMed
Sørensen KI, Baker KE, Kelln RA, Neuhard J. Nucleotide pool-sensitive selection of the transcriptional start site in vivo at the Salmonella typhimurium pyrC and pyrD promoters. J. Bacteriol. 1993;175:4137–4144. PubMed PMC
Walker KA, Mallik P, Pratt TS, Osuna R. The Escherichia coli Fis promoter is regulated by changes in the levels of its transcription initiation nucleotide CTP. J. Biol. Chem. 2004;279:50818–50828. PubMed
Liu C, Heath LS, Turnbough CL. Regulation of pyrBI operon expression in Escherichia coli by UTP-sensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev. 1994;8:2904–2912. PubMed
Liu J, Turnbough CL. Effects of transcriptional start site sequence and position on nucleotide-sensitive selection of alternative start sites at the pyrC promoter in Escherichia coli. J. Bacteriol. 1994;176:2938–2945. PubMed PMC
Schwartz M, Neuhard J. Control of expression of the pyr genes in Salmonella typhimurium: effects of variations in uridine and cytidine nucleotide pools. J. Bacteriol. 1975;121:814–822. PubMed PMC
Kuehner JN, Brow DA. Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol. Cell. 2008;31:201–211. PubMed
Thiebaut M, Colin J, Neil H, Jacquier A, Séraphin B, Lacroute F, Libri D. Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol. Cell. 2008;31:671–682. PubMed
Amiott EA, Jaehning JA. Sensitivity of the yeast mitochondrial RNA polymerase to +1 and +2 initiating nucleotides. J. Biol. Chem. 2006;281:34982–34988. PubMed
Helmann JD, DeHaseth PL. Protein-nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners. Biochemistry. 1999;38:5959–5967. PubMed
Paul BJ, Ross W, Gaal T, Gourse RL. rRNA transcription in Escherichia coli. Annu. Rev. Genet. 2004;38:749–770. PubMed
Haugen SP, Ross W, Gourse RL. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol. 2008;6:507–519. PubMed PMC
Gaal T, Bartlett MS, Ross W, Turnbough CL, Gourse RL. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science. 1997;278:2092–2097. PubMed
Revyakin A, Ebright RH, Strick TR. Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proc. Natl Acad. Sci. USA. 2004;101:4776–4780. PubMed PMC
Krásný L, Tišerová H, Jonák J, Rejman D, Šanderová H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol. 2008;69:42–54. PubMed
Murray HD, Schneider DA, Gourse RL. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell. 2003;12:125–134. PubMed
Henkin TM, Sonenshein AL. Mutations of the Escherichia coli lacUV5 promoter resulting in increased expression in Bacillus subtilis. Mol. Gen. Genet. 1987;209:467–474. PubMed
Hirvonen CA, Ross W, Wozniak CE, Marasco E, Anthony JR, Aiyar SE, Newburn VH, Gourse RL. Contributions of UP elements and the transcription factor FIS to expression from the seven rrn P1 promoters in Escherichia coli. J. Bacteriol. 2001;183:6305–6314. PubMed PMC
Haugen SP, Berkmen MB, Ross W, Gaal T, Ward C, Gourse RL. rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell. 2006;125:1069–1082. PubMed
Haugen SP, Ross W, Manrique M, Gourse RL. Fine structure of the promoter—sigma region 1.2 interaction. Proc. Natl Acad. Sci. USA. 2008;2007:2–7. PubMed PMC
Gaal T, Barkei J, Dickson RR, DeBoer HA, DeHaseth PL, Alavi H, Gourse RL. Saturation mutagenesis of an Escherichia coli rRNA promoter and initial characterization of promoter variants. J. Bacteriol. 1989;171:4852–4861. PubMed PMC
Krásný L, Gourse RL. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 2004;23:4473–4483. PubMed PMC
Natori Y, Tagami K, Murakami K, Yoshida S, Tanigawa O, Moh Y, Masuda K, Wada T, Suzuki S, Nanamiya H, et al. Transcription activity of individual rrn operons in Bacillus subtilis mutants deficient in (p)ppGpp synthetase genes, relA, yjbM, and ywaC. J. Bacteriol. 2009;191:4555–4561. PubMed PMC
Lopez JM, Dromerick A, Freese E. Response of guanosine 5′-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J. Bacteriol. 1981;146:605–613. PubMed PMC
Tojo S, Kumamoto K, Hirooka K, Fujita Y. Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis. J. Bacteriol. 2010;192:1573–1585. PubMed PMC
Tojo S, Satomura T, Kumamoto K, Hirooka K, Fujita Y. Molecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids. J. Bacteriol. 2008;190:6134–6147. PubMed PMC
Ross W, Thompson JF, Newlands JT, Gourse RL. E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J. 1990;9:3733–3742. PubMed PMC
Guérout-Fleury A, Frandsen N, Stragier P. Plasmids for ectopic integration on Bacillus subtilis. Gene. 1996;180:57–61. PubMed
Mitani T, Heinze JE, Freese E. Induction of sporulation in Bacillus subtilis by decoyinine and hadacidin. Biochem. Biophys. Res. Commun. 1977;77:1118–1125. PubMed
Qi Y, Hulett FM. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 1998;28:1187–1197. PubMed
Chang BY, Doi RH. Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase sigma A factor. J. Bacteriol. 1990;172:3257–3263. PubMed PMC
Juang Y-L, Helmann JD. A promoter melting region in the primary sigma factor of Bacillus subtilis. J. Mol. Biol. 1994;235:1470–1488. PubMed
Barker MM, Gaal T, Josaitis CA, Gourse RL. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol. 2001;305:673–688. PubMed
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. PubMed PMC
Schneider DA, Murray HD, Gourse RL. Measuring control of transcription initiation by changing concentrations of nucleotides and their derivatives. Methods Enzymol. 2003;370:606–617. PubMed
Johnston EB, Lewis PJ, Griffith R. The interaction of Bacillus subtilis sigmaA with RNA polymerase. Protein Sci. 2009;18:2287–2297. PubMed PMC
Hudson BP, Quispe J, Lara-González S, Kim Y, Berman HM, Arnold E, Ebright RH, Lawson CL. Three-dimensional EM structure of an intact activator-dependent transcription initiation complex. Proc. Natl Acad. Sci. USA. 2009;106:19830–19835. PubMed PMC
Widom RL, Jarvis ED, LaFauci G, Rudner R. Instability of rRNA operons in Bacillus subtilis. J. Bacteriol. 1988;170:605–610. PubMed PMC
Henkin TM. Ribosomes, protein synthesis factors, and tRNA synthetases. In: Sonenshein AL, Hoch JA, Losick R, editors. Bacillus subtilis and Its Closest Relatives: From Genes to Cells. Washington, DC: American Society for Microbiology; 2002. pp. 313–322.
Fukushima T, Ishikawa S, Yamamoto H, Ogasawara N, Sekiguchi J. Transcriptional, functional and cytochemical analyses of the veg gene in Bacillus subtilis. J. Biochem. 2003;133:475–483. PubMed
Le Grice SF, Shin CC, Whipple F, Sonenshein AL. Separation and analysis of the RNA polymerase binding sites of a complex Bacillus subtilis promoter. Mol. Gen. Genet. 1986;204:229–236. PubMed
Barker MM, Gourse RL. Regulation of rRNA transcription correlates with nucleoside triphosphate sensing. J. Bacteriol. 2001;183:6315–6323. PubMed PMC
Ward JB, Zahler SA. Genetic studies of leucine biosynthesis in Bacillus subtilis. J. Bacteriol. 1973;116:719–726. PubMed PMC
Eymann C, Homuth G, Scharf C, Hecker M. Bacillus subtilis functional genomics : global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 2002;184:2500–2520. PubMed PMC
Wipat A, Carter N, Brignell SC, Guy BJ, Piper K, Sanders J, Emmerson PT, Harwood CR. The dnaB-pheA (256°-240°) region of the Bacillus subtilis chromosome containing genes responsible for stress responses , the utilization of plant cell walls and primary metabolism. Microbiology. 1996;142:3067–3078. PubMed
Choonee N, Even S, Zig L, Putzer H. Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Nucleic Acids Res. 2007;35:1578–1588. PubMed PMC
Hove-Jensen B. Identification of tms-26 as an allele of the gcaD gene, which encodes N-acetylglucosamine 1-phosphate uridyltransferase in Bacillus subtilis. J. Bacteriol. 1992;174:6852–6856. PubMed PMC
Wolf M. Phylogeny of Firmicutes with special reference to Mycoplasma (Mollicutes) as inferred from phosphoglycerate kinase amino acid sequence data. Int. J. Syst. Evol. Microbiol. 2004;54:871–875. PubMed
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007;71:495–548. PubMed PMC
Yap WH, Wang Y. Molecular cloning and comparative sequence analyses of rRNA operons in Streptomyces nodosus ATCC 14899. Gene. 1999;232:77–85. PubMed
Gonzalez-y-Merchand JA, Colstonl MJ, Cox RA, Hill M, Nw L. The rRNA operons of Mycobacterium smegmatis and Mycobacterium tuberculosis: comparison of promoter elements and of neighbouring upstream genes. Microbiology. 1996;142:667–674. PubMed
Naryshkin N, Revyakin A, Kim Y, Mekler V, Ebright RH. Structural organization of the RNA polymerase-promoter open complex. Cell. 2000;101:601–611. PubMed
Camacho A, Salas M. Effect of mutations in the “extended -10” motif of three Bacillus subtilis sigmaA-RNA polymerase-dependent promoters. J. Mol. Biol. 1999;286:683–693. PubMed
Voskuil MI, Chambliss GH. The -16 region of Bacillus subtilis and other gram-positive bacterial promoters. Nucleic Acids Res. 1998;26:3584–3590. PubMed PMC
Voskuil MI, Chambliss GH. The TRTGn motif stabilizes the transcription initiation open complex. J. Mol. Biol. 2002;322:521–532. PubMed
Helmann JD. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res. 1995;23:2351–2360. PubMed PMC
Whipple FW, Sonenshein AL. Mechanism of initiation of transcription by Bacillus subtilis RNA polymerase at several promoters. J. Mol. Biol. 1992;223:399–414. PubMed
Ishikawa S, Oshima T, Kurokawa K, Kusuya Y, Ogasawara N. RNA polymerase trafficking in Bacillus subtilis cells. J. Bacteriol. 2010;192:5778–5787. PubMed PMC
Artsimovitch I, Svetlov V, Murakami KS, Landick R. Co-overexpression of Escherichia coli RNA polymerase subunits allows isolation and analysis of mutant enzymes lacking lineage-specific sequence insertions. J. Biol. Chem. 2003;278:12344–12355. PubMed
Grandoni JA, Zahler SA, Calvo JM. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. J. Bacteriol. 1992;174:3212–3219. PubMed PMC
Mader U, Hennig S, Hecker M, Homuth G. Transcriptional organization and posttranscriptional regulation of the Bacillus subtilis branched-chain amino acid biosynthesis genes. J. Bacteriol. 2004;186:2240–2252. PubMed PMC
Shivers RP, Sonenshein AL. Bacillus subtilis ilvB operon: an intersection of global regulons. Mol. Microbiol. 2005;56:1549–1559. PubMed
Tojo S, Satomura T, Morisaki K, Yoshida K, Hirooka K, Fujita Y. Negative Transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA. J. Bacteriol. 2004;186:7971–7979. PubMed PMC
Tojo S, Satomura T, Morisaki K, Deutscher J, Hirooka K, Fujita Y. Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA. Mol. Microbiol. 2005;56:1560–1573. PubMed
Rutherford ST, Lemke JJ, Vrentas CE, Gaal T, Ross W, Gourse RL. Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanism of factors that bind in the secondary channel of RNA polymerase. J. Mol. Biol. 2007;366:1243–1257. PubMed PMC
Roberts JW, Shankar S, Filter JJ. RNA polymerase elongation factors. Annu. Rev. Microbiol. 2008;62:211–233. PubMed PMC
Rutherford ST, Villers CL, Lee J-H, Ross W, Gourse RL. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev. 2009:236–248. PubMed PMC
Potrykus K, Vinella D, Murphy H, Szalewska-Palasz A, D’Ari R, Cashel M. Antagonistic regulation of Escherichia coli ribosomal RNA rrnB P1 promoter activity by GreA and DksA. J. Biol. Chem. 2006;281:15238–15248. PubMed
Motáčková V, Šanderová H, Žídek L, Nováček J, Padrta P, Švenková A, Korelusová J, Jonák J, Krásný L, Sklenář V. Solution structure of the N-terminal domain of Bacillus subtilis delta subunit of RNA polymerase and its classification based on structural homologs. Proteins. 2010;78:1807–1810. PubMed
López de Saro FJ, Yoshikawa N, Helmann JD. Expression, abundance, and RNA polymerase binding properties of the delta factor of Bacillus subtilis. J. Biol. Chem. 1999;274:15953–15958. PubMed
Doherty G, Fogg M, Wilkinson A, Lewis P. Small subunits of RNA polymerase: localisation, levels and implications for core enzyme composition. Microbiology. 2010;156:3532–3543. PubMed
Doherty GP, Meredith DH, Lewis PJ. Subcellular partitioning of transcription factors in Bacillus subtilis. J. Bacteriol. 2006;188:4101–4110. PubMed PMC
Xue X, Tomasch J, Sztajer H, Wagner-Döbler I. The delta subunit of RNA polymerase, RpoE, is a global modulator of Streptococcus mutans environmental adaptation. J. Bacteriol. 2010;192:5081–5092. PubMed PMC
Achberger EC, Whiteley HR. The role of the delta peptide of the Bacillus subtilis RNA polymerase in promoter selection. J. Biol. Chem. 1981;256:7424–7432. PubMed
Mycobacterial HelD connects RNA polymerase recycling with transcription initiation
Effects of DNA Topology on Transcription from rRNA Promoters in Bacillus subtilis
The Core and Holoenzyme Forms of RNA Polymerase from Mycobacterium smegmatis
Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins