Mycobacterial HelD connects RNA polymerase recycling with transcription initiation

. 2024 Oct 09 ; 15 (1) : 8740. [epub] 20241009

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39384756
Odkazy

PubMed 39384756
PubMed Central PMC11464796
DOI 10.1038/s41467-024-52891-5
PII: 10.1038/s41467-024-52891-5
Knihovny.cz E-zdroje

Mycobacterial HelD is a transcription factor that recycles stalled RNAP by dissociating it from nucleic acids and, if present, from the antibiotic rifampicin. The rescued RNAP, however, must disengage from HelD to participate in subsequent rounds of transcription. The mechanism of release is unknown. We show that HelD from Mycobacterium smegmatis forms a complex with RNAP associated with the primary sigma factor σA and transcription factor RbpA but not CarD. We solve several structures of RNAP-σA-RbpA-HelD without and with promoter DNA. These snapshots capture HelD during transcription initiation, describing mechanistic aspects of HelD release from RNAP and its protective effect against rifampicin. Biochemical evidence supports these findings, defines the role of ATP binding and hydrolysis by HelD in the process, and confirms the rifampicin-protective effect of HelD. Collectively, these results show that when HelD is present during transcription initiation, the process is protected from rifampicin until the last possible moment.

Zobrazit více v PubMed

Sutherland, C. & Murakami, K. S. An introduction to the structure and function of the catalytic core enzyme of Escherichia coli RNA polymerase. EcoSal Plus8, 1–9 (2018). PubMed PMC

Paget, M. S. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules5, 1245–1265 (2015). PubMed PMC

Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell98, 811–824 (1999). PubMed

Browning, D. F. & Busby, S. J. Local and global regulation of transcription initiation in bacteria. Nat. Rev. Microbiol.14, 638–650 (2016). PubMed

Wassarman, K. M. 6S RNA, a Global Regulator of Transcription. Microbiol. Spectr. 10.1128/microbiolspec.RWR-0019-2018 (2018) PubMed PMC

Hnilicova, J. et al. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res.42, 11763–11776 (2014). PubMed PMC

Barvik, I., Rejman, D., Panova, N., Sanderova, H. & Krasny, L. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol. Rev.41, 131–138 (2017). PubMed

Koval, T. et al. Domain structure of HelD, an interaction partner of Bacillus subtilis RNA polymerase. FEBS Lett.593, 996–1005 (2019). PubMed

Kouba, T. et al. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat. Commun.11, 6419 (2020). PubMed PMC

Wiedermannova, J. et al. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Res.42, 5151–5163 (2014). PubMed PMC

Campbell, E. A. et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell104, 901–912 (2001). PubMed

Larsen, J. S., Miller, M., Oakley, A. J., Dixon, N. E. & Lewis, P. J. Multiple classes and isoforms of the RNA polymerase recycling motor protein HelD. Microbiologyopen10, e1251 (2021). PubMed PMC

Hurst-Hess, K. R., Saxena, A., Rudra, P., Yang, Y. & Ghosh, P. Mycobacterium abscessus HelR interacts with RNA polymerase to confer intrinsic rifamycin resistance. Mol. Cell82, 3166–3177 e3165 (2022). PubMed PMC

Surette, M. D., Waglechner, N., Koteva, K. & Wright, G. D. HelR is a helicase-like protein that protects RNA polymerase from rifamycin antibiotics. Mol. Cell82, 3151–3165.e3159 (2022). PubMed

Sudzinova, P. et al. What the Hel: recent advances in understanding rifampicin resistance in bacteria. FEMS Microbiol. Rev. 10.1093/femsre/fuac051(2022). PubMed PMC

Wilson, D. N., Hauryliuk, V., Atkinson, G. C. & O’Neill, A. J. Target protection as a key antibiotic resistance mechanism. Nat. Rev. Microbiol.18, 637–648 (2020). PubMed

Newing, T. P. et al. Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nat. Commun.11, 6420 (2020). PubMed PMC

Pei, H. H. et al. The delta subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat. Commun.11, 6418 (2020). PubMed PMC

Wang, Z. et al. RbpA and sigma(B) association regulates polyphosphate levels to modulate mycobacterial isoniazid-tolerance. Mol. Microbiol.108, 627–640 (2018). PubMed

Hubin, E. A. et al. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife10.7554/eLife.22520 (2017). PubMed PMC

Hu, Y. & Coates, A. R. Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J. Bacteriol.181, 469–476 (1999). PubMed PMC

Zhu, D. X. & Stallings, C. L. Transcription regulation by CarD in mycobacteria is guided by basal promoter kinetics. J. Biol. Chem.299, 104724 (2023). PubMed PMC

Srivastava, D. B. et al. Structure and function of CarD, an essential mycobacterial transcription factor. Proc. Natl Acad. Sci. USA110, 12619–12624 (2013). PubMed PMC

Pettersson, B. M. et al. Comparative sigma factor-mRNA levels in mycobacterium marinum under stress conditions and during host infection. PloS ONE10, e0139823 (2015). PubMed PMC

Hurst-Hess, K. et al. Mycobacterial SigA and SigB cotranscribe essential housekeeping genes during exponential growth. mBio10.1128/mBio.00273-19 (2019). PubMed PMC

Singh, R. K. et al. Expression, purification, and in silico characterization of Mycobacterium smegmatis alternative sigma factor SigB. Dis. Markers2022, 7475704 (2022). PubMed PMC

Singha, B. et al. The unique N-terminal region of Mycobacterium tuberculosis sigma factor A plays a dominant role in the essential function of this protein. J. Biol. Chem.299, 102933 (2023). PubMed PMC

Schwartz, E. C. et al. A full-length group 1 bacterial sigma factor adopts a compact structure incompatible with DNA binding. Chem. Biol.15, 1091–1103 (2008). PubMed PMC

Zachrdla, M. et al. Solution structure of domain 1.1 of the sigma(A) factor from Bacillus subtilis is preformed for binding to the RNA polymerase core. J. Biol. Chem.292, 11610–11617 (2017). PubMed PMC

Hubin, E. A., Lilic, M., Darst, S. A. & Campbell, E. A. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Nat. Commun.8, 16072 (2017). PubMed PMC

Morichaud, Z. et al. Structural basis of the mycobacterial stress-response RNA polymerase auto-inhibition via oligomerization. Nat. Commun.14, 484 (2023). PubMed PMC

Ruff, E. F., Record, M. T. Jr. & Artsimovitch, I. Initial events in bacterial transcription initiation. Biomolecules5, 1035–1062 (2015). PubMed PMC

Kouba, T. et al. The core and holoenzyme forms of RNA polymerase from Mycobacterium smegmatis. J. Bacteriol.10.1128/JB.00583-18 (2019). PubMed PMC

Boyaci, H., Chen, J., Jansen, R., Darst, S. A. & Campbell, E. A. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature565, 382–385 (2019). PubMed PMC

Chen, J. et al. Stepwise promoter melting by bacterial RNA polymerase. Mol. Cell78, 275–288.e276 (2020). PubMed PMC

Feklistov, A. et al. RNA polymerase motions during promoter melting. Science356, 863–866 (2017). PubMed PMC

Chen, J. et al. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. eLife10.7554/eLife.49375 (2019). PubMed PMC

Gulten, G. & Sacchettini, J. C. Structure of the Mtb CarD/RNAP beta-lobes complex reveals the molecular basis of interaction and presents a distinct DNA-binding domain for Mtb CarD. Structure21, 1859–1869 (2013). PubMed PMC

Bae, B. et al. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex. eLife10.7554/eLife.08505 (2015). PubMed PMC

Lee, J. Y. & Yang, W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell127, 1349–1360 (2006). PubMed PMC

China, A., Tare, P. & Nagaraja, V. Comparison of promoter-specific events during transcription initiation in mycobacteria. Microbiology156, 1942–1952 (2010). PubMed

Sojka, L. et al. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res.39, 4598–4611 (2011). PubMed PMC

Krasny, L., Tiserova, H., Jonak, J., Rejman, D. & Sanderova, H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol.69, 42–54 (2008). PubMed

Barker, M. M. & Gourse, R. L. Regulation of rRNA transcription correlates with nucleoside triphosphate sensing. J. Bacteriol.183, 6315–6323 (2001). PubMed PMC

Zenkin, N. & Yuzenkova, Y. New insights into the functions of transcription factors that bind the RNA polymerase secondary channel. Biomolecules5, 1195–1209 (2015). PubMed PMC

Paul, B. J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell118, 311–322 (2004). PubMed

Gopalkrishnan, S., Ross, W., Chen, A. Y. & Gourse, R. L. TraR directly regulates transcription initiation by mimicking the combined effects of the global regulators DksA and ppGpp. Proc. Natl Acad. Sci. USA114, E5539–E5548 (2017). PubMed PMC

Shin, Y. et al. Structural basis of ribosomal RNA transcription regulation. Nat. Commun.12, 528 (2021). PubMed PMC

He, D. et al. Pseudomonas aeruginosa SutA wedges RNAP lobe domain open to facilitate promoter DNA unwinding. Nat. Commun.13, 4204 (2022). PubMed PMC

Knejzlik, Z. et al. The mycobacterial guaB1 gene encodes a guanosine 5’-monophosphate reductase with a cystathionine-beta-synthase domain. FEBS J.289, 5571–5598 (2022). PubMed PMC

Delumeau, O. et al. The dynamic protein partnership of RNA polymerase in Bacillus subtilis. Proteomics11, 2992–3001 (2011). PubMed

Lin, W. et al. Structural basis of Mycobacterium tuberculosis transcription and transcription inhibition. Mol. Cell66, 169–179 e168 (2017). PubMed PMC

Unger, T., Jacobovitch, Y., Dantes, A., Bernheim, R. & Peleg, Y. Applications of the restriction free (RF) cloning procedure for molecular manipulations and protein expression. J. Struct. Biol.172, 34–44 (2010). PubMed

Currinn, H., Guscott, B., Balklava, Z., Rothnie, A. & Wassmer, T. APP controls the formation of PI(3,5)P(2) vesicles through its binding of the PIKfyve complex. Cell. Mol. Life Sci.73, 393–408 (2016). PubMed PMC

Sikova, M. et al. Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis. Mol. Microbiol.111, 354–372 (2019). PubMed

Huff, J., Czyz, A., Landick, R. & Niederweis, M. Taking phage integration to the next level as a genetic tool for mycobacteria. Gene468, 8–19 (2010). PubMed PMC

van Kessel, J. C. & Hatfull, G. F. Recombineering in Mycobacterium tuberculosis. Nat. Methods4, 147–152 (2007). PubMed

Tropea, J. E., Cherry, S. & Waugh, D. S. Expression and purification of soluble His(6)-tagged TEV protease. Methods Mol. Biol.498, 297–307 (2009). PubMed

Lin, T. I. & Morales, M. F. Application of a one-step procedure for measuring inorganic phosphate in the presence of proteins: the actomyosin ATPase system. Anal. Biochem77, 10–17 (1977). PubMed

Villanueva, R. A. M. & Chen, Z. J. ggplot2: Elegant Graphics for Data Analysis, 2nd edition. Meas. Interdiscip. Res.17, 160–167 (2019).

Krasny, L. & Gourse, R. L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J.23, 4473–4483 (2004). PubMed PMC

Qi, Y. & Hulett, F. M. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol.28, 1187–1197 (1998). PubMed

Kang, K. R. & Kim, Y. W. A simple protocol of DNA sequencing with 10% formamide for dissolving G/C compression. Exp. Mol. Med.29, 235–237 (1997).

Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res.50, D543–D552 (2022). PubMed PMC

Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol.152, 36–51 (2005). PubMed

Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods14, 331–332 (2017). PubMed PMC

Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol.142, 334–347 (2003). PubMed

Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun.11, 5208 (2020). PubMed PMC

Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol.180, 519–530 (2012). PubMed PMC

Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J.478, 4169–4185 (2021). PubMed PMC

Burnley, T., Palmer, C. M. & Winn, M. Recent developments in the CCP-EM software suite. Acta Crystallogr. Sect. D Struct. Biol.73, 469–477 (2017). PubMed PMC

Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife10.7554/eLife.27131 (2017). PubMed PMC

Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods14, 793–796 (2017). PubMed PMC

Naydenova, K. & Russo, C. J. Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat. Commun.8, 629 (2017). PubMed PMC

Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. Sect. D Biol. Crystallogr.66, 22–25 (2010). PubMed

Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. Sect. D Biol. Crystallogr.71, 136–153 (2015). PubMed PMC

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr.60, 2126–2132 (2004). PubMed

Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. Sect. D Struct. Biol.74, 519–530 (2018). PubMed PMC

Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci.32, e4792 (2023). PubMed PMC

Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. Sect. D Struct. Biol.74, 531–544 (2018). PubMed PMC

Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D., Struct. Biol.75, 861–877 (2019). PubMed PMC

Cerny, J. et al. Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org. Acta Crystallogr. Sect. D Struct. Biol.76, 805–813 (2020). PubMed PMC

Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). PubMed

Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Biol. Crystallogr.67, 235–242 (2011). PubMed PMC

Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol.372, 774–797 (2007). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...