Mycobacterial HelD connects RNA polymerase recycling with transcription initiation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39384756
PubMed Central
PMC11464796
DOI
10.1038/s41467-024-52891-5
PII: 10.1038/s41467-024-52891-5
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- bakteriální proteiny * metabolismus genetika MeSH
- DNA řízené RNA-polymerasy * metabolismus MeSH
- genetická transkripce MeSH
- iniciace genetické transkripce * MeSH
- Mycobacterium smegmatis * metabolismus genetika MeSH
- promotorové oblasti (genetika) * MeSH
- regulace genové exprese u bakterií MeSH
- rifampin * farmakologie MeSH
- sigma faktor * metabolismus genetika MeSH
- transkripční faktory metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- bakteriální proteiny * MeSH
- DNA řízené RNA-polymerasy * MeSH
- rifampin * MeSH
- sigma faktor * MeSH
- transkripční faktory MeSH
Mycobacterial HelD is a transcription factor that recycles stalled RNAP by dissociating it from nucleic acids and, if present, from the antibiotic rifampicin. The rescued RNAP, however, must disengage from HelD to participate in subsequent rounds of transcription. The mechanism of release is unknown. We show that HelD from Mycobacterium smegmatis forms a complex with RNAP associated with the primary sigma factor σA and transcription factor RbpA but not CarD. We solve several structures of RNAP-σA-RbpA-HelD without and with promoter DNA. These snapshots capture HelD during transcription initiation, describing mechanistic aspects of HelD release from RNAP and its protective effect against rifampicin. Biochemical evidence supports these findings, defines the role of ATP binding and hydrolysis by HelD in the process, and confirms the rifampicin-protective effect of HelD. Collectively, these results show that when HelD is present during transcription initiation, the process is protected from rifampicin until the last possible moment.
Zobrazit více v PubMed
Sutherland, C. & Murakami, K. S. An introduction to the structure and function of the catalytic core enzyme of Escherichia coli RNA polymerase. EcoSal Plus8, 1–9 (2018). PubMed PMC
Paget, M. S. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules5, 1245–1265 (2015). PubMed PMC
Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell98, 811–824 (1999). PubMed
Browning, D. F. & Busby, S. J. Local and global regulation of transcription initiation in bacteria. Nat. Rev. Microbiol.14, 638–650 (2016). PubMed
Wassarman, K. M. 6S RNA, a Global Regulator of Transcription. Microbiol. Spectr. 10.1128/microbiolspec.RWR-0019-2018 (2018) PubMed PMC
Hnilicova, J. et al. Ms1, a novel sRNA interacting with the RNA polymerase core in mycobacteria. Nucleic Acids Res.42, 11763–11776 (2014). PubMed PMC
Barvik, I., Rejman, D., Panova, N., Sanderova, H. & Krasny, L. Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. FEMS Microbiol. Rev.41, 131–138 (2017). PubMed
Koval, T. et al. Domain structure of HelD, an interaction partner of Bacillus subtilis RNA polymerase. FEBS Lett.593, 996–1005 (2019). PubMed
Kouba, T. et al. Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat. Commun.11, 6419 (2020). PubMed PMC
Wiedermannova, J. et al. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Res.42, 5151–5163 (2014). PubMed PMC
Campbell, E. A. et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell104, 901–912 (2001). PubMed
Larsen, J. S., Miller, M., Oakley, A. J., Dixon, N. E. & Lewis, P. J. Multiple classes and isoforms of the RNA polymerase recycling motor protein HelD. Microbiologyopen10, e1251 (2021). PubMed PMC
Hurst-Hess, K. R., Saxena, A., Rudra, P., Yang, Y. & Ghosh, P. Mycobacterium abscessus HelR interacts with RNA polymerase to confer intrinsic rifamycin resistance. Mol. Cell82, 3166–3177 e3165 (2022). PubMed PMC
Surette, M. D., Waglechner, N., Koteva, K. & Wright, G. D. HelR is a helicase-like protein that protects RNA polymerase from rifamycin antibiotics. Mol. Cell82, 3151–3165.e3159 (2022). PubMed
Sudzinova, P. et al. What the Hel: recent advances in understanding rifampicin resistance in bacteria. FEMS Microbiol. Rev. 10.1093/femsre/fuac051(2022). PubMed PMC
Wilson, D. N., Hauryliuk, V., Atkinson, G. C. & O’Neill, A. J. Target protection as a key antibiotic resistance mechanism. Nat. Rev. Microbiol.18, 637–648 (2020). PubMed
Newing, T. P. et al. Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nat. Commun.11, 6420 (2020). PubMed PMC
Pei, H. H. et al. The delta subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat. Commun.11, 6418 (2020). PubMed PMC
Wang, Z. et al. RbpA and sigma(B) association regulates polyphosphate levels to modulate mycobacterial isoniazid-tolerance. Mol. Microbiol.108, 627–640 (2018). PubMed
Hubin, E. A. et al. Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA. eLife10.7554/eLife.22520 (2017). PubMed PMC
Hu, Y. & Coates, A. R. Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J. Bacteriol.181, 469–476 (1999). PubMed PMC
Zhu, D. X. & Stallings, C. L. Transcription regulation by CarD in mycobacteria is guided by basal promoter kinetics. J. Biol. Chem.299, 104724 (2023). PubMed PMC
Srivastava, D. B. et al. Structure and function of CarD, an essential mycobacterial transcription factor. Proc. Natl Acad. Sci. USA110, 12619–12624 (2013). PubMed PMC
Pettersson, B. M. et al. Comparative sigma factor-mRNA levels in mycobacterium marinum under stress conditions and during host infection. PloS ONE10, e0139823 (2015). PubMed PMC
Hurst-Hess, K. et al. Mycobacterial SigA and SigB cotranscribe essential housekeeping genes during exponential growth. mBio10.1128/mBio.00273-19 (2019). PubMed PMC
Singh, R. K. et al. Expression, purification, and in silico characterization of Mycobacterium smegmatis alternative sigma factor SigB. Dis. Markers2022, 7475704 (2022). PubMed PMC
Singha, B. et al. The unique N-terminal region of Mycobacterium tuberculosis sigma factor A plays a dominant role in the essential function of this protein. J. Biol. Chem.299, 102933 (2023). PubMed PMC
Schwartz, E. C. et al. A full-length group 1 bacterial sigma factor adopts a compact structure incompatible with DNA binding. Chem. Biol.15, 1091–1103 (2008). PubMed PMC
Zachrdla, M. et al. Solution structure of domain 1.1 of the sigma(A) factor from Bacillus subtilis is preformed for binding to the RNA polymerase core. J. Biol. Chem.292, 11610–11617 (2017). PubMed PMC
Hubin, E. A., Lilic, M., Darst, S. A. & Campbell, E. A. Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures. Nat. Commun.8, 16072 (2017). PubMed PMC
Morichaud, Z. et al. Structural basis of the mycobacterial stress-response RNA polymerase auto-inhibition via oligomerization. Nat. Commun.14, 484 (2023). PubMed PMC
Ruff, E. F., Record, M. T. Jr. & Artsimovitch, I. Initial events in bacterial transcription initiation. Biomolecules5, 1035–1062 (2015). PubMed PMC
Kouba, T. et al. The core and holoenzyme forms of RNA polymerase from Mycobacterium smegmatis. J. Bacteriol.10.1128/JB.00583-18 (2019). PubMed PMC
Boyaci, H., Chen, J., Jansen, R., Darst, S. A. & Campbell, E. A. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature565, 382–385 (2019). PubMed PMC
Chen, J. et al. Stepwise promoter melting by bacterial RNA polymerase. Mol. Cell78, 275–288.e276 (2020). PubMed PMC
Feklistov, A. et al. RNA polymerase motions during promoter melting. Science356, 863–866 (2017). PubMed PMC
Chen, J. et al. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. eLife10.7554/eLife.49375 (2019). PubMed PMC
Gulten, G. & Sacchettini, J. C. Structure of the Mtb CarD/RNAP beta-lobes complex reveals the molecular basis of interaction and presents a distinct DNA-binding domain for Mtb CarD. Structure21, 1859–1869 (2013). PubMed PMC
Bae, B. et al. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex. eLife10.7554/eLife.08505 (2015). PubMed PMC
Lee, J. Y. & Yang, W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell127, 1349–1360 (2006). PubMed PMC
China, A., Tare, P. & Nagaraja, V. Comparison of promoter-specific events during transcription initiation in mycobacteria. Microbiology156, 1942–1952 (2010). PubMed
Sojka, L. et al. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res.39, 4598–4611 (2011). PubMed PMC
Krasny, L., Tiserova, H., Jonak, J., Rejman, D. & Sanderova, H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol.69, 42–54 (2008). PubMed
Barker, M. M. & Gourse, R. L. Regulation of rRNA transcription correlates with nucleoside triphosphate sensing. J. Bacteriol.183, 6315–6323 (2001). PubMed PMC
Zenkin, N. & Yuzenkova, Y. New insights into the functions of transcription factors that bind the RNA polymerase secondary channel. Biomolecules5, 1195–1209 (2015). PubMed PMC
Paul, B. J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell118, 311–322 (2004). PubMed
Gopalkrishnan, S., Ross, W., Chen, A. Y. & Gourse, R. L. TraR directly regulates transcription initiation by mimicking the combined effects of the global regulators DksA and ppGpp. Proc. Natl Acad. Sci. USA114, E5539–E5548 (2017). PubMed PMC
Shin, Y. et al. Structural basis of ribosomal RNA transcription regulation. Nat. Commun.12, 528 (2021). PubMed PMC
He, D. et al. Pseudomonas aeruginosa SutA wedges RNAP lobe domain open to facilitate promoter DNA unwinding. Nat. Commun.13, 4204 (2022). PubMed PMC
Knejzlik, Z. et al. The mycobacterial guaB1 gene encodes a guanosine 5’-monophosphate reductase with a cystathionine-beta-synthase domain. FEBS J.289, 5571–5598 (2022). PubMed PMC
Delumeau, O. et al. The dynamic protein partnership of RNA polymerase in Bacillus subtilis. Proteomics11, 2992–3001 (2011). PubMed
Lin, W. et al. Structural basis of Mycobacterium tuberculosis transcription and transcription inhibition. Mol. Cell66, 169–179 e168 (2017). PubMed PMC
Unger, T., Jacobovitch, Y., Dantes, A., Bernheim, R. & Peleg, Y. Applications of the restriction free (RF) cloning procedure for molecular manipulations and protein expression. J. Struct. Biol.172, 34–44 (2010). PubMed
Currinn, H., Guscott, B., Balklava, Z., Rothnie, A. & Wassmer, T. APP controls the formation of PI(3,5)P(2) vesicles through its binding of the PIKfyve complex. Cell. Mol. Life Sci.73, 393–408 (2016). PubMed PMC
Sikova, M. et al. Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis. Mol. Microbiol.111, 354–372 (2019). PubMed
Huff, J., Czyz, A., Landick, R. & Niederweis, M. Taking phage integration to the next level as a genetic tool for mycobacteria. Gene468, 8–19 (2010). PubMed PMC
van Kessel, J. C. & Hatfull, G. F. Recombineering in Mycobacterium tuberculosis. Nat. Methods4, 147–152 (2007). PubMed
Tropea, J. E., Cherry, S. & Waugh, D. S. Expression and purification of soluble His(6)-tagged TEV protease. Methods Mol. Biol.498, 297–307 (2009). PubMed
Lin, T. I. & Morales, M. F. Application of a one-step procedure for measuring inorganic phosphate in the presence of proteins: the actomyosin ATPase system. Anal. Biochem77, 10–17 (1977). PubMed
Villanueva, R. A. M. & Chen, Z. J. ggplot2: Elegant Graphics for Data Analysis, 2nd edition. Meas. Interdiscip. Res.17, 160–167 (2019).
Krasny, L. & Gourse, R. L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J.23, 4473–4483 (2004). PubMed PMC
Qi, Y. & Hulett, F. M. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol.28, 1187–1197 (1998). PubMed
Kang, K. R. & Kim, Y. W. A simple protocol of DNA sequencing with 10% formamide for dissolving G/C compression. Exp. Mol. Med.29, 235–237 (1997).
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res.50, D543–D552 (2022). PubMed PMC
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol.152, 36–51 (2005). PubMed
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods14, 331–332 (2017). PubMed PMC
Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol.142, 334–347 (2003). PubMed
Bepler, T., Kelley, K., Noble, A. J. & Berger, B. Topaz-Denoise: general deep denoising models for cryoEM and cryoET. Nat. Commun.11, 5208 (2020). PubMed PMC
Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol.180, 519–530 (2012). PubMed PMC
Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J.478, 4169–4185 (2021). PubMed PMC
Burnley, T., Palmer, C. M. & Winn, M. Recent developments in the CCP-EM software suite. Acta Crystallogr. Sect. D Struct. Biol.73, 469–477 (2017). PubMed PMC
Jakobi, A. J., Wilmanns, M. & Sachse, C. Model-based local density sharpening of cryo-EM maps. eLife10.7554/eLife.27131 (2017). PubMed PMC
Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods14, 793–796 (2017). PubMed PMC
Naydenova, K. & Russo, C. J. Measuring the effects of particle orientation to improve the efficiency of electron cryomicroscopy. Nat. Commun.8, 629 (2017). PubMed PMC
Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. Sect. D Biol. Crystallogr.66, 22–25 (2010). PubMed
Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. Sect. D Biol. Crystallogr.71, 136–153 (2015). PubMed PMC
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr.60, 2126–2132 (2004). PubMed
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. Sect. D Struct. Biol.74, 519–530 (2018). PubMed PMC
Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci.32, e4792 (2023). PubMed PMC
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. Sect. D Struct. Biol.74, 531–544 (2018). PubMed PMC
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D., Struct. Biol.75, 861–877 (2019). PubMed PMC
Cerny, J. et al. Structural alphabets for conformational analysis of nucleic acids available at dnatco.datmos.org. Acta Crystallogr. Sect. D Struct. Biol.76, 805–813 (2020). PubMed PMC
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem.25, 1605–1612 (2004). PubMed
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Biol. Crystallogr.67, 235–242 (2011). PubMed PMC
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol.372, 774–797 (2007). PubMed