Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24520113
PubMed Central
PMC4005671
DOI
10.1093/nar/gku113
PII: gku113
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- Bacillus subtilis enzymologie genetika MeSH
- bakteriální proteiny izolace a purifikace metabolismus MeSH
- DNA řízené RNA-polymerasy chemie izolace a purifikace metabolismus MeSH
- DNA metabolismus MeSH
- elongace genetické transkripce MeSH
- fenotyp MeSH
- genetická transkripce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- bakteriální proteiny MeSH
- DNA řízené RNA-polymerasy MeSH
- DNA MeSH
Bacterial RNA polymerase (RNAP) is an essential multisubunit protein complex required for gene expression. Here, we characterize YvgS (HelD) from Bacillus subtilis, a novel binding partner of RNAP. We show that HelD interacts with RNAP-core between the secondary channel of RNAP and the alpha subunits. Importantly, we demonstrate that HelD stimulates transcription in an ATP-dependent manner by enhancing transcriptional cycling and elongation. We demonstrate that the stimulatory effect of HelD can be amplified by a small subunit of RNAP, delta. In vivo, HelD is not essential but it is required for timely adaptations of the cell to changing environment. In summary, this study establishes HelD as a valid component of the bacterial transcription machinery.
Zobrazit více v PubMed
Osterberg S, del Peso-Santos T, Shingler V. Regulation of alternative sigma factor use. Annu. Rev. Microbiol. 2011;65:37–55. PubMed
Juang YL, Helmann JD. The delta subunit of Bacillus subtilis RNA polymerase. An allosteric effector of the initiation and core-recycling phases of transcription. J. Mol. Biol. 1994;239:1–14. PubMed
Lopez de Saro FJ, Woody AY, Helmann JD. Structural analysis of the Bacillus subtilis delta factor: a protein polyanion which displaces RNA from RNA polymerase. J. Mol. Biol. 1995;252:189–202. PubMed
Epshtein V, Dutta D, Wade J, Nudler E. An allosteric mechanism of Rho-dependent transcription termination. Nature. 2010;463:245–249. PubMed PMC
Toulme F, Mosrin-Huaman C, Sparkowski J, Das A, Leng M, Rahmouni AR. GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J. 2000;19:6853–6859. PubMed PMC
Yang X, Molimau S, Doherty GP, Johnston EB, Marles-Wright J, Rothnagel R, Hankamer B, Lewis RJ, Lewis PJ. The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA. EMBO Rep. 2009;10:997–1002. PubMed PMC
Delumeau O, Lecointe F, Muntel J, Guillot A, Guedon E, Monnet V, Hecker M, Becher D, Polard P, Noirot P. The dynamic protein partnership of RNA polymerase in Bacillus subtilis. Proteomics. 2011;11:2992–3001. PubMed
Yang W. Lessons learned from UvrD helicase: mechanism for directional movement. Annu. Rev. Biophys. 2010;39:367–385. PubMed PMC
Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, Bidnenko E, Marchadier E, Hoebeke M, Aymerich S, et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science. 2012;335:1103–1106. PubMed
Carrasco B, Fernandez S, Petit MA, Alonso JC. Genetic recombination in Bacillus subtilis 168: effect of DeltahelD on DNA repair and homologous recombination. J. Bacteriol. 2001;183:5772–5777. PubMed PMC
Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 1983;166:557–580. PubMed
Dubnau D, Davidoff-Abelson R. Fate of transforming DNA following uptake by competent Bacillus. subtilis. I. Formation and properties of the donor-recipient complex. J. Mol. Biol. 1971;56:209–221. PubMed
Qi Y, Hulett FM. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 1998;28:1187–1197. PubMed
Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, et al. Essential Bacillus subtilis genes. Proc. Natl Acad. Sci. USA. 2003;100:4678–4683. PubMed PMC
Rabatinova A, Sanderova H, Matejckova JJ, Korelusova J, Sojka L, Barvik I, Papouskova V, Sklenar V, Zidek L, Krasny L. The delta subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J. Bacteriol. 2013;195:2603–2611. PubMed PMC
Chang BY, Doi RH. Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase sigma A factor. J. Bacteriol. 1990;172:3257–3263. PubMed PMC
Ross W, Thompson JF, Newlands JT, Gourse RL. E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J. 1990;9:3733–3742. PubMed PMC
Krasny L, Gourse RL. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 2004;23:4473–4483. PubMed PMC
Johnston EB, Lewis PJ, Griffith R. The interaction of Bacillus subtilis sigmaA with RNA polymerase. Protein Sci. 2009;18:2287–2297. PubMed PMC
Anborgh PH, Parmeggiani A, Jonak J. Site-directed mutagenesis of elongation factor Tu. The functional and structural role of residue Cys81. Eur. J. Biochem. 1992;208:251–257. PubMed
Gaal T, Ross W, Estrem ST, Nguyen LH, Burgess RR, Gourse RL. Promoter recognition and discrimination by EsigmaS RNA polymerase. Mol. Microbiol. 2001;42:939–954. PubMed
Barker MM, Gaal T, Gourse RL. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J. Mol. Biol. 2001;305:689–702. PubMed
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2008;10:421. PubMed PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. PubMed
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. PubMed
Anthony LC, Artsimovitch I, Svetlov V, Landick R, Burgess RR. Rapid purification of His(6)-tagged Bacillus subtilis core RNA polymerase. Protein Expr. Purif. 2000;19:350–354. PubMed
Lee JY, Yang W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell. 2006;127:1349–1360. PubMed PMC
Cao Z, Julin DA. Characterization in vitro and in vivo of the DNA helicase encoded by Deinococcus radiodurans locus DR1572. DNA Repair (Amst) 2009;8:612–619. PubMed
Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, Borukhov S, Yokoyama S. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature. 2002;417:712–719. PubMed
Sukhodolets MV, Cabrera JE, Zhi H, Jin DJ. RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription. Genes Dev. 2001;15:3330–3341. PubMed PMC
Epshtein V, Toulme F, Rahmouni AR, Borukhov S, Nudler E. Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J. 2003;22:4719–4727. PubMed PMC
Holmberg C, Rutberg B. Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination. Mol. Microbiol. 1991;5:2891–2900. PubMed
Gowrishankar J, Leela JK, Anupama K. R-loops in bacterial transcription: their causes and consequences. Transcription. 2013;4:153–157. PubMed PMC
McKinley BA, Sukhodolets MV. Escherichia coli RNA polymerase-associated SWI/SNF protein RapA: evidence for RNA-directed binding and remodeling activity. Nucleic Acids Res. 2007;35:7044–7060. PubMed PMC
Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R. Structural basis for substrate loading in bacterial RNA polymerase. Nature. 2007;448:163–168. PubMed
Yawn B, Zhang L, Mura C, Sukhodolets MV. RapA, the SWI/SNF subunit of Escherichia coli RNA polymerase, promotes the release of nascent RNA from transcription complexes. Biochemistry. 2009;48:7794–7806. PubMed PMC
Sukhodolets MV, Jin DJ. Interaction between RNA polymerase and RapA, a bacterial homolog of the SWI/SNF protein family. J. Biol. Chem. 2000;275:22090–22097. PubMed
Sukhodolets MV, Jin DJ. RapA, a novel RNA polymerase-associated protein, is a bacterial homolog of SWI2/SNF2. J. Biol. Chem. 1998;273:7018–7023. PubMed
Stec-Dziedzic E, Lyzen R, Skarfstad E, Shingler V, Szalewska-Palasz A. Characterization of the transcriptional stimulatory properties of the Pseudomonas putida RapA protein. Biochim. Biophys. Acta. 2013;1829:219–230. PubMed
Baranello L, Kouzine F, Levens D. DNA Topoisomerases: beyond the standard role. Transcription. 2013 4 doi: 10.4161/trns.26598. PubMed
Gwynn EJ, Smith AJ, Guy CP, Savery NJ, McGlynn P, Dillingham MS. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLoS One. 2013;8:e78141. PubMed PMC
Mycobacterial HelD connects RNA polymerase recycling with transcription initiation
What the Hel: recent advances in understanding rifampicin resistance in bacteria
β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck
Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase
The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes
ε, a new subunit of RNA polymerase found in gram-positive bacteria