Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27001521
PubMed Central
PMC4838386
DOI
10.1093/nar/gkw171
PII: gkw171
Knihovny.cz E-zdroje
- MeSH
- Bacillus subtilis enzymologie MeSH
- deoxyribonukleotidy biosyntéza chemie MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- DNA chemie metabolismus MeSH
- Escherichia coli enzymologie MeSH
- genetická transkripce * MeSH
- genetické matrice MeSH
- konformace nukleové kyseliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- deoxyribonukleotidy MeSH
- DNA řízené RNA-polymerasy MeSH
- DNA MeSH
DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription.
Zobrazit více v PubMed
Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltrasferases. ChemBioChem. 2002;3:274–293. PubMed
Fu Y., He C. Nucleic acid modifications with epigenetic significance. Curr. Opin. Chem. Biol. 2012;16:516–524. PubMed PMC
Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–935. PubMed PMC
Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in purkinje neurons and the brain. Science. 2009;324:929–930. PubMed PMC
Ito S., Shen L., Dai Q., Wu S.C., Collins L.B., Swenberg J.A., He C., Zhang Y. Tet proteins can convert 5-methylcytosine to 5- formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–1303. PubMed PMC
Münzel M., Globisch D., Carell T. 5-Hydroxymethylcytosine, the Sixth Base of the Genome. Angew. Chem. Int. Ed. 2011;50:6460–6468. PubMed
Song C.-X., He C. Potential functional roles of DNA demethylation intermediates. Trends Biochem. Sci. 2013;38:480–484. PubMed PMC
Lu X., Han D., Zhao B.S., Song C.-X., Zhang L.-S., Doré L.C., He C. Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res. 2015;25:386–389. PubMed PMC
Liutkevičiutè Z., Kriukienè E., Ličytè J., Rudytè M., Urbanavičiutè G., Klimašauskas S. Direct decarboxylation of 5-Carboxylcytosine by DNA C5- Methyltransferases. J. Am. Chem. Soc. 2014;136:5884–5887. PubMed
Schiesser S., Pfaffeneder T., Sadeghian K., Hackner B., Steigenberger B., Schröder A.S., Steinbacher J., Kashiwazaki G., Höfner G., Wanner K.T., et al. Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. J. Am. Chem. Soc. 2013;135:14593–14599. PubMed
Bachman M., Uribe-Lewis S., Yang X., Burgess H.E., Iurlaro M., Reik W., Murrell A., Balasubramanian S. 5-Formylcytosine can be a stable DNA modification in mammals. Nat. Chem. Biol. 2015;11:555–557. PubMed PMC
Pfaffeneder T., Spada F., Wagner M., Brandmayr C., Laube S.K., Eisen D., Truss M., Steinbacher J., Hackner B., Kotljarova O., et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 2014;10:574–581. PubMed
Kass S.U., Pruss D., Wolffe A.P. How does DNA methylation repress transcription? Trends Genet. 1997;13:444–449. PubMed
Law J.A., Jacobsen S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010;11:204–220. PubMed PMC
Schröder A., Steinbacher J., Steinberger B., Gnerlich F.A., Schiesser S., Pfaffeneder T., Carell T. Synthesis of a DNA promoter segment containing all four epigenetic nucleosides: 5-Methyl-, 5-Hydroxymethyl-, 5-Formyl-, and 5-Carboxy-2′-deoxycytidine. Angew. Chem. Int. Ed. 2014;53:315–318. PubMed
Lercher L., McDonough M.A., El-Sagheer A.H., Thalhammer A., Kriaucionis S., Brown T., Schofield C.J. Structural insights into how 5-hydroxymethylation influences transcription factor binding. Chem. Commun. 2014;50:1794–1796. PubMed
Wang L., Zhou Y., Xu L., Xiao R., Lu X., Chen L., Chong J., Li H., He C., Fu X.-D., et al. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature. 2015;523:621–625. PubMed PMC
Raiber E.-A., Murat P., Chirgadze D.Y., Beraldi D., Luisi B.F., Balasubramanian S. 5-Formylcytosine alters the structure of the DNA double helix. Nat. Struct. Mol. Biol. 2015;22:44–49. PubMed PMC
Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA Methyltransferases. ChemBioChem. 2002;3:274–293. PubMed
Loenen W.A.M., Dryden D.T.F., Raleigh E.A., Wilson G.G., Murray N.E. Nucleic Acids Res. 2014;42:2–19. PubMed PMC
Bickle T.A., Kruger D.H. Biology of DNA Restriction. Microbiol. Rev. 1993;57:434–450. PubMed PMC
Sanchez-Romero M.A., Cota I., Csadesús J. DNA methylation in bacteria: from the methyl group ot the methylome. Curr. Opin. Microbiol. 2015;25:9–16. PubMed
Reisenauer A., Shapiro L. DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J. 2002;21:4969–4977. PubMed PMC
Seo Y.J., Matsuda S., Romesberg F.E. Transcription of an expanded genetic alphabet. J. Am. Chem. Soc. 2009;131:5046–5047. PubMed PMC
Ishizuka T., Kimoto M., Sato A., Hirao I. Site-specific functionalization of RNA molecules by an unnatural base pair transcription system via click chemistry. Chem. Commun. 2012;48:10835–10837. PubMed
Liu J., Doetsch P. W. Escherichia coli RNA and DNA polymerase bypass of dihydrouracil: mutagenic potential via transcription and replication. Nucleic Acids Res. 1998;26:1707–1712. PubMed PMC
You C., Wang J., Dai X., Wang Y. Transcriptional inhibition and mutagenesis induced by N-nitroso compound-derived carboxymethylated thymidine adducts in DNA. Nucleic Acids Res. 2015;43:1012–1018. PubMed PMC
Viswanathan A., Doetsch P. W. Effects of nonbulky DNA base damages on Escherichia coli RNA polymerase-mediated elongation and promoter clearance. J. Biol. Chem. 1998;273:21276–21281. PubMed
Kuraoka I., Endou M., Yamaguchi Y., Wada T., Handa H., Tanaka K. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. J. Biol. Chem. 2003;278:7294–7299. PubMed
Farnham P.J., Platt T. Effects of DNA base analogs on transcription termination at the tryptophan operon attenuator of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1982;79:998–1002. PubMed PMC
Kitsera N., Stathis D., Lühnsdorf B., Müller H., Carell T., Epe B., Khobta A. 8-Oxo-7, 8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1. Nucleic Acids Res. 2011;39:5926–5934. PubMed PMC
You C., Wang Y. Quantitative measurement of transcriptional inhibition and mutagenesis induced by site-specifically incorporated DNA lesions in vitro and in vivo. Nat. Protoc. 2015;10:1389–1406. PubMed PMC
Macíčková-Cahová H., Pohl R., Hocek M. Cleavage of functionalized DNA containing 5-modified pyrimidines by Type II restriction endonucleases. ChemBioChem. 2011;12:431–438. PubMed
Mačková M., Pohl R., Hocek M. Polymerase synthesis of DNA bearing vinyl groups in major groove and their cleavage by restriction endonucleases. ChemBioChem. 2014;15:2306–2312. PubMed
Mačková M., Boháčová S., Perlíková P., Poštová Slavětínská L., Hocek M. Polymerase synthesis and restriction enzyme cleavage of DNA containing 7-substituted 7-deazaguanines. ChemBioChem. 2015;16:2225–2236. PubMed
Macíčková-Cahová H., Hocek M. Cleavage of adenine-modified functionalized DNA by type II restriction endonucleases. Nucleic Acids Res. 2009;37:7612–7622. PubMed PMC
Kielkowski P., Brock N.L., Dickschat J.S., Hocek M. Nucleobase protection strategy for gene cloning and expression. ChemBioChem. 2013;14:801–804. PubMed
Kielkowski P., Macíčková-Cahová H., Pohl R., Hocek M. Transient and switchable (triethylsilyl)ethynyl protection of DNA against cleavage by restriction endonucleases. Angew. Chem. Int. Ed. 2011;50:8727–8730. PubMed
Vaníková Z., Hocek M. Polymerase synthesis of photocaged DNA resistant against cleavage by restriction endonucleases. Angew. Chem. Int. Ed. 2014;53:6734–6737. PubMed
Seela F., Thomas H. Synthesis of certain 5-Substituted 2′-deoxytubercidin derivatives. Helv. Chim. Acta. 1994;77:897–903.
Krásný L., Gourse R.L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 2004;23:4473–4483. PubMed PMC
Anthony L.C., Artsimovitch I., Svetlov V., Landick R., Burgess R.R. Rapid purification of His(6)-tagged Bacillus subtilis core RNA polymerase. Protein Expr. Purif. 2000;19:350–354. PubMed
Chang B.Y., Doi R.H. Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase sigma A factor. J. Bacteriol. 1990;172:3257–3263. PubMed PMC
Wiedermannová J., Sudzinová P., Kovaľ T., Rabatinová A., Šanderová H., Ramaniuk O., Rittich Š., Dohnálek J., Zhihui F., Halada P., et al. Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Res. 2014;42:5151–5163. PubMed PMC
Rabatinová A., Šanderová H., Jirát Matějčková J., Korelusová J., Sojka L., Barvík I., Papoušková V., Sklenář V., Žídek L., Krásný L. The δ subunit of RNA polymerase is required for rapid changes in gene expression and competitive fitness of the cell. J. Bacteriol. 2013;195:2603–2611. PubMed PMC
Hocek M., Fojta M. Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids. Org. Biomol. Chem. 2008;6:2233–2241. PubMed
Hollenstein M. Nucleoside triphosphates - building blocks for the modification of nucleic acids. Molecules. 2012;17:13569–13591. PubMed PMC
Hocek M. Synthesis of base-modified 2′-deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J. Org. Chem. 2014;79:9914–9921. PubMed
Ludwig J. A new route to nucleoside 5′-triphosphates. ActaBiochim. Biophys. Acad. Sci. Hung. 1981;16:131–133. PubMed
Kovacs T., Otvos L. Simple synthesis of 5-vinyl and 5-ethynyl-2′-deoxyuridine-5′-triphosphates. Tetrahedron Lett. 1988;29:4525–4528.
Ruff E.F., Drennan A.C., Capp M.W., Poulos M.A., Artsimovitch I., Record M.T., Jr E. coli RNA polymerase determinants of open complex lifetime and structure. J. Mol. Biol. 2015;427:2435–2450. PubMed PMC
Bralley P., Chang S.A., Jones G.H. A phylogeny of bacterial RNA nucleotidyltransferases: Bacillus halodurans contains two tRNAnucleotidyltransferases. J. Bacteriol. 2005;187:5927–5936. PubMed PMC
Murakami K.S. Structural biology of bacterial RNA polymerase. Biomolecules. 2015;5:848–862. PubMed PMC
Weiss A., Shaw L.N. Small things considered: the small accessory subunits of RNA polymerase in Gram-positive bacteria. FEMS Microbiol. Rev. 2015;39:541–554. PubMed PMC
Ruff E.F., Record M.T., Jr, Artsimovitch I. Initial events in bacterial transcription initiation. Biomolecules. 2015;5:1035–1062. PubMed PMC
Sojka L., Kouba T., Barvík I., Sanderová H., Maderová Z., Jonák J., Krásny L. Rapid changes in gene expression: DNA determinants of promoter regulation by the concentration of the transcription initiating NTP in Bacillus subtilis. Nucleic Acids Res. 2011;39:4598–4611. PubMed PMC
Fukushima T., Ishikawa S., Yamamoto H., Ogasawara N., Sekiguchi J. Transcriptional, functional and cytochemical analyses of the veg gene in Bacillus subtilis. J. Biochem. 2003;133:475–483. PubMed
Lei Y., Oshima T., Ogasawara N., Ishikawa S. Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis. J. Bacteriol. 2013;195:1697–1705. PubMed PMC
Ménová P., Dziuba D., Güixens-Gallardo P., Jurkiewicz P., Hof M., Hocek M. Fluorescence quenching in oligonucleotides containing 7-substituted 7-deazaguanine bases prepared by the Nicking Enzyme Amplification Reaction. Bioconjugate Chem. 2015;26:361–366. PubMed
Krásný L., Tišerová H., Jonák J., Rejman D., Šanderová H. The identity of the transcription +1 position is crucial for changes in gene expression in response to amino acid starvation in Bacillus subtilis. Mol. Microbiol. 2008;69:42–54. PubMed
Lane W.J., Darst S.A. Molecular evolution of multisubunit RNA polymerases: sequence analysis. J. Mol. Biol. 2010;395:671–685. PubMed PMC
Lane W.J., Darst S.A. Molecular evolution of multisubunit RNA polymerases: structural analysis. J. Mol. Biol. 2010;395:686–704. PubMed PMC
Whipple F.W., Sonenshein A.L. Mechanism of initiation of transcription by Bacillus subtilis RNA polymerase at several promoters. J. Mol. Biol. 1992;223:399–414. PubMed
Liu X., Bushnell D.A., Kornberg R.D. Lock and key to transcription: sigma-DNA Interaction. Cell. 2011;147:1218–1219. PubMed
Feklistov A., Darst S.A. Structural basis for promoter -10 element recognition by the bacterial RNA polymerase sigma subunit. Cell. 2011;147:1257–1269. PubMed PMC
Zuo Y., Steitz T.A. Crystal structures of the E. coli transcription initiation complexes with a complete bubble. Mol. Cell. 2015;58:534–540. PubMed PMC
Bae B., Feklistov A., Lass-Napiorkowska A., Landick R., Darst S.A. Structure of a bacterial RNA polymerase holoenzyme open promoter complex. eLife. 2015;4:e08504. PubMed PMC
Campbell E.A., Muzzin O., Chlenov M., Sun J.L., Olson C.A., Weinman O., Trester-Zedlitz M.L., Darst S.A. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol. Cell. 2002;9:527–539. PubMed