Cleavage of adenine-modified functionalized DNA by type II restriction endonucleases

. 2009 Dec ; 37 (22) : 7612-22.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19820117

A set of 6 base-modified 2'-deoxyadenosine derivatives was incorporated to diverse DNA sequences by primer extension using Vent (exo-) polymerase and the influence of the modification on cleavage by diverse restriction endonucleases was studied. While 8-substituted (Br or methyl) adenine derivatives were well tolerated by the restriction enzymes and the corresponding sequences were cleaved, the presence of 7-substituted 7-deazaadenine in the recognition sequence resulted in blocking of cleavage by some enzymes depending on the nature and size of the 7-substituent. All sequences with modifications outside of the recognition sequence were perfectly cleaved by all the restriction enzymes. The results are useful both for protection of some sequences from cleavage and for manipulation of functionalized DNA by restriction cleavage.

Zobrazit více v PubMed

Famulok M. Allosteric aptamers and aptazymes as probes for screening approaches. Curr. Opin. Mol. Therap. 2005;7:137–143. PubMed

Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 2007;107:3715–3743. PubMed

Peracchi A. DNA catalysis: potential, limitations, open questions. ChemBioChem. 2005;6:1316–1322. PubMed

Condon A. Designed DNA molecules: principles and applications of molecular nanotechnology. Nat. Rev. Genet. 2006;7:565–575. PubMed PMC

Alemdaroglu FE, Herrmann A. DNA meets synthetic polymers—highly versatile hybrid materials. Org. Biomol. Chem. 2007;5:1311–1320. PubMed

Weisbrod SH, Marx A. Novel strategies for the site-specific covalent labelling of nucleic acids. Chem. Commun. 2008:5675–5685. PubMed

Hocek M, Fojta M. Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids. Org. Biomol. Chem. 2008;6:2233–2241. PubMed

Thum O, Jager S, Famulok M. Functionalized DNA: a new replicable biopolymer. Angew. Chem. Int. Ed. 2001;40:3990–3993. PubMed

Jager S, Famulok M. Generation and enzymatic amplification of high-density functionalized DNA double strands. Angew. Chem. Int. Ed. 2004;43:3337–3340. PubMed

Jager S, Rasched G, Kornreich-Leshem H, Engeser M, Thum O, Famulok M. A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem. Soc. 2005;127:15071–15082. PubMed

Kuwahara M, Hanawa K, Ohsawa K, Kitagata R, Ozaki H, Sawai H. Direct PCR amplification of various modified DNAs having amino acids: convenient preparation of DNA libraries with high-potential activities for in vitro selection. Nucleic Acids Res. 2006;34:5383–5394. PubMed

Lee SE, Sidorov A, Gourlain T, Mignet N, Thorpe SJ, Brazier JA, Dickman MJ, Hornby DP, Grasby JA, Williams DM. Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Nucleic Acids Res. 2001;29:1565–1573. PubMed PMC

Shoji A, Hasegawa T, Kuwahara M, Ozaki H, Sawai H. Chemico-enzymatic synthesis of a new fluorescent-labeled DNA by PCR with a thymidine nucleotide analogue bearing an acridone derivative. Bioorg. Med. Chem. Lett., 2007. 2007;17:776–779. PubMed

Sawai H, Ozaki AN, Satoh F, Ohbayashi T, Masud MM, Ozaki H. Expansion of structural and functional diversities of DNA using new 5-substituted deoxyuridine derivatives by PCR with superthermophilic KOD Dash DNA polymerase. Chem. Commun. 2001:2601–2605.

Matsui M, Nishiyama Y, Ueji SI, Ebara Y. Construction of saccharide-modified DNAs by DNA polymerase. Bioorg. Med. Chem. Lett. 2007;17:456–460. PubMed

Kuwahara M, Hanawa K, Ohsawa K, Kitagata R, Ozaki H, Sawai H. Direct PCR amplification of various modified DNAs having amino acids: Convenient preparation of DNA libraries with high-potential activities for in vitro selection. Bioorg. Med. Chem. 2006;14:2518–2526. PubMed

Čapek P, Cahová H, Pohl R, Hocek M, Gloeckner C, Marx A. An efficient method for the construction of functionalized DNA bearing amino acid groups through cross-coupling reactions of nucleoside triphosphates followed by primer extension or PCR. Chem. Eur. J. 2007;13:6196–6203. PubMed

Brázdilová P, Vrábel M, Pohl R, Pivoňková H, Havran L, Hocek M, Fojta M. Ferrocenylethynyl derivatives of nucleoside triphosphates: synthesis, incorporation, electrochemistry, and bioanalytical applications. Chem. Eur. J. 2007;13:9527–9533. PubMed

Cahová H, Havran L, Brázdilová P, Pivoňková H, Pohl R, Fojta M, Hocek M. Aminophenyl- and nitrophenyl-labeled nucleoside triphosphates: synthesis, enzymatic incorporation, and electrochemical detection. Angew. Chem. Int. Ed. 2008;47:2059–2062. PubMed

Brakmann S, Lobermann S. High-density labeling of DNA: preparation and characterization of the target material for single-molecule sequencing. Angew. Chem. Int. Ed. 2001;40:1427–1429. PubMed

Thoresen LH, Jiao GS, Haaland WC, Metzker ML, Burgess K. Rigid, conjugated, fluoresceinated thymidine triphosphates: syntheses and polymerase mediated incorporation into DNA analogues. Chem. Eur. J. 2003;9:4603–4610. PubMed

Obeid S, Yulikov M, Jeschke G, Marx A. Enzymatic synthesis of multiple spin-labeled DNA. Angew. Chem Int. Ed. 2008;47:6782–6785. PubMed

Weizman H, Tor Y. Redox-active metal-containing nucleotides: synthesis, tunability, and enzymatic incorporation into DNA. J. Am. Chem. Soc. 2002;124:1568–1569. PubMed

Vrábel M, Horáková P, Pivoňková H, Kalachova L, Černocká H, Cahová H, Pohl R, Šebest P, Havran L, Hocek M, et al. Base-modified DNA labeled by [Ru(bpy)(3)](2+) and [Os(bpy)(3)](2+) complexes: construction by polymerase incorporation of modified nucleoside triphosphates, electrochemical and luminescent properties, and applications. Chem. Eur. J. 2009;15:1144–1154. PubMed

Burley GA, Gierlich J, Mofid MR, Nir H, Tal S, Eichen Y, Carell T. Directed DNA metallization. J. Am. Chem. Soc. 2006;128:1398–1399. PubMed

Gramlich PM, Wirges CT, Gierlich J, Carell T. Synthesis of modified DNA by PCR with alkyne-bearing purines followed by a click reaction. Org. Lett. 2008;10:249–251. PubMed

Weisbrod SH, Marx A. A nucleoside triphosphate for site-specific labelling of DNA by the Staudinger ligation. Chem. Commun. 2007:1828–1830. PubMed

Baccaro A, Weibrod SH, Marx A. DNA conjugation by the Staudinger ligation: new thymidine analogues. Synthesis. 2007:1949–1954.

Cahová H, Pohl R, Bednárová L, Nováková K, Cvačka J, Hocek M. Synthesis of 8-bromo-, 8-methyl- and 8-phenyl-dATP and their polymerace incorporation into DNA. Org. Biomol. Chem. 2008;6:3657–3660. PubMed

Lam C, Hipolito C, Perrin DM. Synthesis and enzymatic incorporation of modified deoxyadenosine triphosphates. Eur. J. Org. Chem. 2008:4915–4923.

Pingoud A, Jeltsch A. Structure and function of type II restriction endonucleases. Nucleic Acid Res. 2001;29:3705–3727. PubMed PMC

Perona JJ. Type II restriction endonuclease. Methods. 2002;28:353–364. PubMed

Galburt EA, Stoddard BL. Catalytic mechanisms of restriction and homing endonucleases. Biochemistry. 2002;41:13851–13860. PubMed

Pingoud A, Fuxreiter M, Pingoud V, Wende W. Type II restriction endonuclease: structure and mechanism. CMLS, Cell Moll. Life Sci. 2005;62:685–707. PubMed

Dupureur CM. NMR studies of restriction enzyme-DNA interactions: role of conformation in sequence specifity. Biochemistry. 2005;44:5065–5074. PubMed

Komatsu H, Kim SG, Sakabe I, Ichikawa T, Nakai M, Takaku H. Purine 8-substitution modulates the recognition by restriction endodeoxyribonucleas EcoRI of octadeoxyribonucleotides (dGGAATTCC) Bioorg. Med. Chem. Lett. 1992;2:565–570.

Bodnar JW, Zempsky W, Warder D, Bergson C, Ward DC. Effect of nucleotide analogs on the cleavage of DNA by the restriction enzymes AluI, DdeI, HinfI, RsaI and TaqI. J. Biol. Chem. 1983;258:15206–15213. PubMed

Jiricny J, Wood SG, Martin D, Ubasawa A. Oligonucleotide duplexes containing inosine, 7-deazainosine, tubercidine, nebularine and 7-deazanebularine as substrates for restriction endonucleases HindII, SalI and TaqI. Nucleic Acid Res. 1986;14:6579–6590. PubMed PMC

Zebala JA, Choi J, Trainor GL, Barany F. DNA recognition of base analogue and chemically modified substrates by the TaqI restriction endonuclease. J. Biol. Chem. 1992;267:8106–8116. PubMed

Seela F, Driller H. Palindromic oligonucleotides containing 7-deaza-2′-deoxyguanosine: solid-phase synthesis of d[(p)GG*AATTCC] octamers and recognition by endodeoxyribonuclease EcoRI. Nucleic Acid Res. 1986;14:2319–2332. PubMed PMC

Seela F, Kehne A. Palindromic octa- and dodecanucleotides containing 2'-deoxyturbecidin: synthesis, hairpin formation, and recognition by the endodeoxyribonuclease EcoRI. Biochemistry. 1987;26:2232–2238. PubMed

Fliess A, Wolfes H, Seela F, Pingoud A. Analysis of the recognition mechanism involved in the EcoRv catalyzed cleavage of DNA using modified oligonucleotides. Nucleic Acid Res. 1988;16:11781–11793. PubMed PMC

Seela F, Röling A. 7-Deazapurine containing DNA: efficiency of c7GdTP, c7AdTP and c7IdTP incorporation during PCR-amplification and protection from endodeoxyribonucleas hydrolysis. Nucleic Acid Res. 1992;20:55–61. PubMed PMC

Newman PC, Nwosu VU, Williams DM, Cosstick R, Seela F, Connolly A. Incorporation of a complete set of deoxyadenosine and thymidine analogs suitable for the study of protein nucleic acid interactions into oligodeoxynucleotides. Application to the EcoRV restriction endonuclease and modification methylase. Biochemistry. 1990;29:9891–9901. PubMed

Seela F, Grein T, Samnick S. 3-Deaza-2′-deoxyadenosine: synthesis via 4-(methylthio)-1H-imidazo[4,5-c]pyridine 2′-deoxyribonucleosides and properties of oligonucleotides. Helv. Chim. Acta. 1992;75:1639–1650.

Marchionni MA, Roufa DJ. Digestion of 5-bromodeoxyuridine-substituted λ-DNA by restriction endonucleases. J. Biol. Chem. 1978;253:9075–9081. PubMed

Valinluck V, Wu W, Liu P, Neidigh JW, Sowers LC. Impact of cytosine 5-halogens on the interaction of DNA with restriction endonucleases and methyltransferase. Chem. Res. Toxicol. 2006;19:556–562. PubMed

Berkner KL, Folk WR. EcoRI cleavage and methylation of DNAs containing modified pyrimidines in the recognition sequence. J. Biol. Chem. 1977;252:3185–3193. PubMed

VanderVeen LA, Druckova A, Riggins JN, Sorrels JL, Guengerich FP, Marnett LJ. Differential DNA recognition and cleavage by EcoRI dependent on the dynamic equilibrium between the two forms of the malondialdehyde-deoxyguanosine Adduct. Biochemistry. 2005;44:5024–5033. PubMed

Topin AN, Gritsenko OM, Brevnov MG, Gromova ES, Korshunova GA. Synthesis of a new photo-cross-linking nucleoside analogue containing an aryl(trifluoromethyl)diazirine group: application for EcoRII and MvaI restriction-modification enzymes. Nucleosides Nucleotides. 1998;17:1163–1175.

Babkina OV, Chutko CA, Shashkov AA, Dzhidzhoev MS, Eritja R, Gromova ES. Iodouracil-mediated photocrosslinking of DNA to EcoRII restriction endonuclease in catalytic conditions. Photochem. Photobiol. Sci. 2002;1:636–640. PubMed

Koudan EV, Subach OM, Korshunova GA, Romanova EA, Eritja R, Gromova ES. DNA duplexes containing photoactive derivatives of 2′-deoxyuridine as photocrosslinking probes for EcoRII DNA methyltransferase-substrate interaction. J. Biomol. Struct. Dynam. 2002;20:421–428. PubMed

Collins TJ. ImageJ for microscopy. BioTechniques. 2007;43(Suppl. 1):25–30. PubMed

Seela F, Zulauf M. Palladium-catalyzed cross coupling of 7-iodo-2′-deoxytubercidin with terminal alkynes. Synthesis. 1996:726–730.

Hedgpeth J, Goodman HM, Boyer HW. DNA nucleotide sequence restricted by the RI Endonuclease. Proc. Natl Acad. Sci. USA. 1972;69:3448–3452. PubMed PMC

Greene PJ, Betlach MC, Boyer HW, Goodman HM. The EcoRI restriction endonuclease. Methods Mol. Biol. 1974;7:87–105.

Polisky B, Greene P, Garfin DE, McCarthy BJ, Goodman HM, Boyer HW. Specificity of substrate recognition by the EcoRI restriction endonuclease. Proc. Nat. Acad. Sci. USA. 1975;72:3310–3314. PubMed PMC

Modrich P, Rubin A. Role of the 2-amino group of deoxyguanosine in sequence recognition by EcoRI restriction and modification enzymes. J. Biol. Chem. 1977;252:7273–7278. PubMed

Middleton JH, Edgell MH, Hutchison CA., III Specific fragments of PhiX174 deoxyribonucleic acid produced by a restriction enzyme from Haemophilus aegyptius, endonuclease Z. J. Virol. 1972;10:42–50. PubMed PMC

Mann MB, Smith HO. Specificity of HpaII and HaeIII DNA methylases. Nucleic Acids Res. 1977;4:4211–4221. PubMed PMC

Tomassini J, Roychoudhury R, Wu R, Roberts RJ. Recognition sequence of restriction endonuclease KpnI from Klebsiella pneumoniae. Nucleic Acids Res. 1978;5:4055–4064. PubMed PMC

Shenoy S, Daigle K, Ehrlich KC, Gehrke CW, Ehrlich M. Hydrolysis by restriction endonucleases at their DNA recognition sequences substituted with mismatched base pairs. Nucleic Acids Res. 1986;14:4407–4420. PubMed PMC

Chandrashekaran S, Manjunatha UH, Nagaraja V. KpnI restriction endonuclease and methyltransferase exhibit contrasting mode of sequence recognition. Nucleic Acids Res. 2004;32:3148–3155. PubMed PMC

Morgan RD, Chang Z. Discovery of and method for cloning and producing the PspGI restriction endonuclease. 1998 WO 9851783.

Morgan R, Xiao JP, Xu SY. Characterization of an extremely thermostable restriction enzyme, PspGI, from a Pyrococcus strain and cloning of the PspGI restriction-modification system in Escherichia coli. Appl. Environ. Microbiol. 1998;64:3669–3673. PubMed PMC

Armstrong K, Bauer WR. Preferential site-dependent cleavage by restriction endonuclease PST-I. Nucleic Acids Res. 1982;10:993–1007. PubMed PMC

Nasri M, Thomas D. Alteration of the specificity of PvuII restriction endonuclease. Nucleic Acids Res. 1987;15:7677–7687. PubMed PMC

Yang RCA, Wu R. Physical mapping of BK virus-DNA with SacI, MboII, and AluI restriction endonucleases. J. Virol. 1978;28:851–864. PubMed PMC

Kita K, Hiraoka N, Kimizuka F, Obayashi A, Kojima H, Takahashi H, Saito H. Interaction of the restriction endonuclease ScaI with its substrates. Nucleic Acids Res. 1985;13:7015–7024. PubMed PMC

Fuchs LY, Covarrubias L, Escalante L, Sanchez S, Bolivar F. Characterization of a site-specific restriction endonuclease SphI from Streptomyces-Phaeochromogenes. Gene. 1980;10:39–46. PubMed

Wei H, Therrien C, Blanchard A, Guan S, Zhu Z. The Fidelity Index provides a systematic quantification of start activity of DNA restriction endonucleases. Nucleic Acids Res. 2008;36:e50. PubMed PMC

Sam MD, Perrona JJ. Mn2+-dependent catalysis by restriction enzymes: pre-steady-state analysis of EcoRV endonuclease reveals burst kinetics and the origins of reduced activity. J. Am. Chem. Soc. 1999;121:1444–1447.

Ang WH, Lippard SJ. Functional consequence of plasmid DNA modified site-specifically with 7-deaza-deoxyadenosine at a single, programmable site. Chem. Commun. 2009:5820–5822. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...