Cleavage of adenine-modified functionalized DNA by type II restriction endonucleases
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19820117
PubMed Central
PMC2794189
DOI
10.1093/nar/gkp845
PII: gkp845
Knihovny.cz E-zdroje
- MeSH
- deoxyadeninnukleotidy chemie MeSH
- deoxyadenosiny chemie MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- DNA chemie MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- restrikční endonukleasy typu II metabolismus MeSH
- štěpení DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2'-deoxyadenosine MeSH Prohlížeč
- deoxyadeninnukleotidy MeSH
- deoxyadenosiny MeSH
- DNA-dependentní DNA-polymerasy MeSH
- DNA MeSH
- restrikční endonukleasy typu II MeSH
- Tli polymerase MeSH Prohlížeč
A set of 6 base-modified 2'-deoxyadenosine derivatives was incorporated to diverse DNA sequences by primer extension using Vent (exo-) polymerase and the influence of the modification on cleavage by diverse restriction endonucleases was studied. While 8-substituted (Br or methyl) adenine derivatives were well tolerated by the restriction enzymes and the corresponding sequences were cleaved, the presence of 7-substituted 7-deazaadenine in the recognition sequence resulted in blocking of cleavage by some enzymes depending on the nature and size of the 7-substituent. All sequences with modifications outside of the recognition sequence were perfectly cleaved by all the restriction enzymes. The results are useful both for protection of some sequences from cleavage and for manipulation of functionalized DNA by restriction cleavage.
Zobrazit více v PubMed
Famulok M. Allosteric aptamers and aptazymes as probes for screening approaches. Curr. Opin. Mol. Therap. 2005;7:137–143. PubMed
Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 2007;107:3715–3743. PubMed
Peracchi A. DNA catalysis: potential, limitations, open questions. ChemBioChem. 2005;6:1316–1322. PubMed
Condon A. Designed DNA molecules: principles and applications of molecular nanotechnology. Nat. Rev. Genet. 2006;7:565–575. PubMed PMC
Alemdaroglu FE, Herrmann A. DNA meets synthetic polymers—highly versatile hybrid materials. Org. Biomol. Chem. 2007;5:1311–1320. PubMed
Weisbrod SH, Marx A. Novel strategies for the site-specific covalent labelling of nucleic acids. Chem. Commun. 2008:5675–5685. PubMed
Hocek M, Fojta M. Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids. Org. Biomol. Chem. 2008;6:2233–2241. PubMed
Thum O, Jager S, Famulok M. Functionalized DNA: a new replicable biopolymer. Angew. Chem. Int. Ed. 2001;40:3990–3993. PubMed
Jager S, Famulok M. Generation and enzymatic amplification of high-density functionalized DNA double strands. Angew. Chem. Int. Ed. 2004;43:3337–3340. PubMed
Jager S, Rasched G, Kornreich-Leshem H, Engeser M, Thum O, Famulok M. A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem. Soc. 2005;127:15071–15082. PubMed
Kuwahara M, Hanawa K, Ohsawa K, Kitagata R, Ozaki H, Sawai H. Direct PCR amplification of various modified DNAs having amino acids: convenient preparation of DNA libraries with high-potential activities for in vitro selection. Nucleic Acids Res. 2006;34:5383–5394. PubMed
Lee SE, Sidorov A, Gourlain T, Mignet N, Thorpe SJ, Brazier JA, Dickman MJ, Hornby DP, Grasby JA, Williams DM. Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Nucleic Acids Res. 2001;29:1565–1573. PubMed PMC
Shoji A, Hasegawa T, Kuwahara M, Ozaki H, Sawai H. Chemico-enzymatic synthesis of a new fluorescent-labeled DNA by PCR with a thymidine nucleotide analogue bearing an acridone derivative. Bioorg. Med. Chem. Lett., 2007. 2007;17:776–779. PubMed
Sawai H, Ozaki AN, Satoh F, Ohbayashi T, Masud MM, Ozaki H. Expansion of structural and functional diversities of DNA using new 5-substituted deoxyuridine derivatives by PCR with superthermophilic KOD Dash DNA polymerase. Chem. Commun. 2001:2601–2605.
Matsui M, Nishiyama Y, Ueji SI, Ebara Y. Construction of saccharide-modified DNAs by DNA polymerase. Bioorg. Med. Chem. Lett. 2007;17:456–460. PubMed
Kuwahara M, Hanawa K, Ohsawa K, Kitagata R, Ozaki H, Sawai H. Direct PCR amplification of various modified DNAs having amino acids: Convenient preparation of DNA libraries with high-potential activities for in vitro selection. Bioorg. Med. Chem. 2006;14:2518–2526. PubMed
Čapek P, Cahová H, Pohl R, Hocek M, Gloeckner C, Marx A. An efficient method for the construction of functionalized DNA bearing amino acid groups through cross-coupling reactions of nucleoside triphosphates followed by primer extension or PCR. Chem. Eur. J. 2007;13:6196–6203. PubMed
Brázdilová P, Vrábel M, Pohl R, Pivoňková H, Havran L, Hocek M, Fojta M. Ferrocenylethynyl derivatives of nucleoside triphosphates: synthesis, incorporation, electrochemistry, and bioanalytical applications. Chem. Eur. J. 2007;13:9527–9533. PubMed
Cahová H, Havran L, Brázdilová P, Pivoňková H, Pohl R, Fojta M, Hocek M. Aminophenyl- and nitrophenyl-labeled nucleoside triphosphates: synthesis, enzymatic incorporation, and electrochemical detection. Angew. Chem. Int. Ed. 2008;47:2059–2062. PubMed
Brakmann S, Lobermann S. High-density labeling of DNA: preparation and characterization of the target material for single-molecule sequencing. Angew. Chem. Int. Ed. 2001;40:1427–1429. PubMed
Thoresen LH, Jiao GS, Haaland WC, Metzker ML, Burgess K. Rigid, conjugated, fluoresceinated thymidine triphosphates: syntheses and polymerase mediated incorporation into DNA analogues. Chem. Eur. J. 2003;9:4603–4610. PubMed
Obeid S, Yulikov M, Jeschke G, Marx A. Enzymatic synthesis of multiple spin-labeled DNA. Angew. Chem Int. Ed. 2008;47:6782–6785. PubMed
Weizman H, Tor Y. Redox-active metal-containing nucleotides: synthesis, tunability, and enzymatic incorporation into DNA. J. Am. Chem. Soc. 2002;124:1568–1569. PubMed
Vrábel M, Horáková P, Pivoňková H, Kalachova L, Černocká H, Cahová H, Pohl R, Šebest P, Havran L, Hocek M, et al. Base-modified DNA labeled by [Ru(bpy)(3)](2+) and [Os(bpy)(3)](2+) complexes: construction by polymerase incorporation of modified nucleoside triphosphates, electrochemical and luminescent properties, and applications. Chem. Eur. J. 2009;15:1144–1154. PubMed
Burley GA, Gierlich J, Mofid MR, Nir H, Tal S, Eichen Y, Carell T. Directed DNA metallization. J. Am. Chem. Soc. 2006;128:1398–1399. PubMed
Gramlich PM, Wirges CT, Gierlich J, Carell T. Synthesis of modified DNA by PCR with alkyne-bearing purines followed by a click reaction. Org. Lett. 2008;10:249–251. PubMed
Weisbrod SH, Marx A. A nucleoside triphosphate for site-specific labelling of DNA by the Staudinger ligation. Chem. Commun. 2007:1828–1830. PubMed
Baccaro A, Weibrod SH, Marx A. DNA conjugation by the Staudinger ligation: new thymidine analogues. Synthesis. 2007:1949–1954.
Cahová H, Pohl R, Bednárová L, Nováková K, Cvačka J, Hocek M. Synthesis of 8-bromo-, 8-methyl- and 8-phenyl-dATP and their polymerace incorporation into DNA. Org. Biomol. Chem. 2008;6:3657–3660. PubMed
Lam C, Hipolito C, Perrin DM. Synthesis and enzymatic incorporation of modified deoxyadenosine triphosphates. Eur. J. Org. Chem. 2008:4915–4923.
Pingoud A, Jeltsch A. Structure and function of type II restriction endonucleases. Nucleic Acid Res. 2001;29:3705–3727. PubMed PMC
Perona JJ. Type II restriction endonuclease. Methods. 2002;28:353–364. PubMed
Galburt EA, Stoddard BL. Catalytic mechanisms of restriction and homing endonucleases. Biochemistry. 2002;41:13851–13860. PubMed
Pingoud A, Fuxreiter M, Pingoud V, Wende W. Type II restriction endonuclease: structure and mechanism. CMLS, Cell Moll. Life Sci. 2005;62:685–707. PubMed
Dupureur CM. NMR studies of restriction enzyme-DNA interactions: role of conformation in sequence specifity. Biochemistry. 2005;44:5065–5074. PubMed
Komatsu H, Kim SG, Sakabe I, Ichikawa T, Nakai M, Takaku H. Purine 8-substitution modulates the recognition by restriction endodeoxyribonucleas EcoRI of octadeoxyribonucleotides (dGGAATTCC) Bioorg. Med. Chem. Lett. 1992;2:565–570.
Bodnar JW, Zempsky W, Warder D, Bergson C, Ward DC. Effect of nucleotide analogs on the cleavage of DNA by the restriction enzymes AluI, DdeI, HinfI, RsaI and TaqI. J. Biol. Chem. 1983;258:15206–15213. PubMed
Jiricny J, Wood SG, Martin D, Ubasawa A. Oligonucleotide duplexes containing inosine, 7-deazainosine, tubercidine, nebularine and 7-deazanebularine as substrates for restriction endonucleases HindII, SalI and TaqI. Nucleic Acid Res. 1986;14:6579–6590. PubMed PMC
Zebala JA, Choi J, Trainor GL, Barany F. DNA recognition of base analogue and chemically modified substrates by the TaqI restriction endonuclease. J. Biol. Chem. 1992;267:8106–8116. PubMed
Seela F, Driller H. Palindromic oligonucleotides containing 7-deaza-2′-deoxyguanosine: solid-phase synthesis of d[(p)GG*AATTCC] octamers and recognition by endodeoxyribonuclease EcoRI. Nucleic Acid Res. 1986;14:2319–2332. PubMed PMC
Seela F, Kehne A. Palindromic octa- and dodecanucleotides containing 2'-deoxyturbecidin: synthesis, hairpin formation, and recognition by the endodeoxyribonuclease EcoRI. Biochemistry. 1987;26:2232–2238. PubMed
Fliess A, Wolfes H, Seela F, Pingoud A. Analysis of the recognition mechanism involved in the EcoRv catalyzed cleavage of DNA using modified oligonucleotides. Nucleic Acid Res. 1988;16:11781–11793. PubMed PMC
Seela F, Röling A. 7-Deazapurine containing DNA: efficiency of c7GdTP, c7AdTP and c7IdTP incorporation during PCR-amplification and protection from endodeoxyribonucleas hydrolysis. Nucleic Acid Res. 1992;20:55–61. PubMed PMC
Newman PC, Nwosu VU, Williams DM, Cosstick R, Seela F, Connolly A. Incorporation of a complete set of deoxyadenosine and thymidine analogs suitable for the study of protein nucleic acid interactions into oligodeoxynucleotides. Application to the EcoRV restriction endonuclease and modification methylase. Biochemistry. 1990;29:9891–9901. PubMed
Seela F, Grein T, Samnick S. 3-Deaza-2′-deoxyadenosine: synthesis via 4-(methylthio)-1H-imidazo[4,5-c]pyridine 2′-deoxyribonucleosides and properties of oligonucleotides. Helv. Chim. Acta. 1992;75:1639–1650.
Marchionni MA, Roufa DJ. Digestion of 5-bromodeoxyuridine-substituted λ-DNA by restriction endonucleases. J. Biol. Chem. 1978;253:9075–9081. PubMed
Valinluck V, Wu W, Liu P, Neidigh JW, Sowers LC. Impact of cytosine 5-halogens on the interaction of DNA with restriction endonucleases and methyltransferase. Chem. Res. Toxicol. 2006;19:556–562. PubMed
Berkner KL, Folk WR. EcoRI cleavage and methylation of DNAs containing modified pyrimidines in the recognition sequence. J. Biol. Chem. 1977;252:3185–3193. PubMed
VanderVeen LA, Druckova A, Riggins JN, Sorrels JL, Guengerich FP, Marnett LJ. Differential DNA recognition and cleavage by EcoRI dependent on the dynamic equilibrium between the two forms of the malondialdehyde-deoxyguanosine Adduct. Biochemistry. 2005;44:5024–5033. PubMed
Topin AN, Gritsenko OM, Brevnov MG, Gromova ES, Korshunova GA. Synthesis of a new photo-cross-linking nucleoside analogue containing an aryl(trifluoromethyl)diazirine group: application for EcoRII and MvaI restriction-modification enzymes. Nucleosides Nucleotides. 1998;17:1163–1175.
Babkina OV, Chutko CA, Shashkov AA, Dzhidzhoev MS, Eritja R, Gromova ES. Iodouracil-mediated photocrosslinking of DNA to EcoRII restriction endonuclease in catalytic conditions. Photochem. Photobiol. Sci. 2002;1:636–640. PubMed
Koudan EV, Subach OM, Korshunova GA, Romanova EA, Eritja R, Gromova ES. DNA duplexes containing photoactive derivatives of 2′-deoxyuridine as photocrosslinking probes for EcoRII DNA methyltransferase-substrate interaction. J. Biomol. Struct. Dynam. 2002;20:421–428. PubMed
Collins TJ. ImageJ for microscopy. BioTechniques. 2007;43(Suppl. 1):25–30. PubMed
Seela F, Zulauf M. Palladium-catalyzed cross coupling of 7-iodo-2′-deoxytubercidin with terminal alkynes. Synthesis. 1996:726–730.
Hedgpeth J, Goodman HM, Boyer HW. DNA nucleotide sequence restricted by the RI Endonuclease. Proc. Natl Acad. Sci. USA. 1972;69:3448–3452. PubMed PMC
Greene PJ, Betlach MC, Boyer HW, Goodman HM. The EcoRI restriction endonuclease. Methods Mol. Biol. 1974;7:87–105.
Polisky B, Greene P, Garfin DE, McCarthy BJ, Goodman HM, Boyer HW. Specificity of substrate recognition by the EcoRI restriction endonuclease. Proc. Nat. Acad. Sci. USA. 1975;72:3310–3314. PubMed PMC
Modrich P, Rubin A. Role of the 2-amino group of deoxyguanosine in sequence recognition by EcoRI restriction and modification enzymes. J. Biol. Chem. 1977;252:7273–7278. PubMed
Middleton JH, Edgell MH, Hutchison CA., III Specific fragments of PhiX174 deoxyribonucleic acid produced by a restriction enzyme from Haemophilus aegyptius, endonuclease Z. J. Virol. 1972;10:42–50. PubMed PMC
Mann MB, Smith HO. Specificity of HpaII and HaeIII DNA methylases. Nucleic Acids Res. 1977;4:4211–4221. PubMed PMC
Tomassini J, Roychoudhury R, Wu R, Roberts RJ. Recognition sequence of restriction endonuclease KpnI from Klebsiella pneumoniae. Nucleic Acids Res. 1978;5:4055–4064. PubMed PMC
Shenoy S, Daigle K, Ehrlich KC, Gehrke CW, Ehrlich M. Hydrolysis by restriction endonucleases at their DNA recognition sequences substituted with mismatched base pairs. Nucleic Acids Res. 1986;14:4407–4420. PubMed PMC
Chandrashekaran S, Manjunatha UH, Nagaraja V. KpnI restriction endonuclease and methyltransferase exhibit contrasting mode of sequence recognition. Nucleic Acids Res. 2004;32:3148–3155. PubMed PMC
Morgan RD, Chang Z. Discovery of and method for cloning and producing the PspGI restriction endonuclease. 1998 WO 9851783.
Morgan R, Xiao JP, Xu SY. Characterization of an extremely thermostable restriction enzyme, PspGI, from a Pyrococcus strain and cloning of the PspGI restriction-modification system in Escherichia coli. Appl. Environ. Microbiol. 1998;64:3669–3673. PubMed PMC
Armstrong K, Bauer WR. Preferential site-dependent cleavage by restriction endonuclease PST-I. Nucleic Acids Res. 1982;10:993–1007. PubMed PMC
Nasri M, Thomas D. Alteration of the specificity of PvuII restriction endonuclease. Nucleic Acids Res. 1987;15:7677–7687. PubMed PMC
Yang RCA, Wu R. Physical mapping of BK virus-DNA with SacI, MboII, and AluI restriction endonucleases. J. Virol. 1978;28:851–864. PubMed PMC
Kita K, Hiraoka N, Kimizuka F, Obayashi A, Kojima H, Takahashi H, Saito H. Interaction of the restriction endonuclease ScaI with its substrates. Nucleic Acids Res. 1985;13:7015–7024. PubMed PMC
Fuchs LY, Covarrubias L, Escalante L, Sanchez S, Bolivar F. Characterization of a site-specific restriction endonuclease SphI from Streptomyces-Phaeochromogenes. Gene. 1980;10:39–46. PubMed
Wei H, Therrien C, Blanchard A, Guan S, Zhu Z. The Fidelity Index provides a systematic quantification of start activity of DNA restriction endonucleases. Nucleic Acids Res. 2008;36:e50. PubMed PMC
Sam MD, Perrona JJ. Mn2+-dependent catalysis by restriction enzymes: pre-steady-state analysis of EcoRV endonuclease reveals burst kinetics and the origins of reduced activity. J. Am. Chem. Soc. 1999;121:1444–1447.
Ang WH, Lippard SJ. Functional consequence of plasmid DNA modified site-specifically with 7-deaza-deoxyadenosine at a single, programmable site. Chem. Commun. 2009:5820–5822. PubMed PMC