Epigenetic Pyrimidine Nucleotides in Competition with Natural dNTPs as Substrates for Diverse DNA Polymerases

. 2022 Oct 21 ; 17 (10) : 2781-2788. [epub] 20220609

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35679536

Five 2'-deoxyribonucleoside triphosphates (dNTPs) derived from epigenetic pyrimidines (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, 5-hydroxymethyluracil, and 5-formyluracil) were prepared and systematically studied as substrates for nine DNA polymerases in competition with natural dNTPs by primer extension experiments. The incorporation of these substrates was evaluated by a restriction endonucleases cleavage-based assay and by a kinetic study of single nucleotide extension. All of the modified pyrimidine dNTPs were good substrates for the studied DNA polymerases that incorporated a significant percentage of the modified nucleotides into DNA even in the presence of natural nucleotides. 5-Methylcytosine dNTP was an even better substrate for most polymerases than natural dCTP. On the other hand, 5-hydroxymethyl-2'-deoxyuridine triphosphate was not the best substrate for SPO1 DNA polymerase, which naturally synthesizes 5hmU-rich genomes of the SPO1 bacteriophage. The results shed light onto the possibility of gene silencing through recycling and random incorporation of epigenetic nucleotides and into the replication of modified bacteriophage genomes.

Zobrazit více v PubMed

Chen K.; Zhao B. S.; He C. Nucleic acid modifications in regulation of gene expression. Cell Chem. Biol. 2016, 23, 74–85. 10.1016/j.chembiol.2015.11.007. PubMed DOI PMC

Carell T.; Kurz M. Q.; Müller M.; Rossa M.; Spada F. Non-canonical Bases in the Genome: The Regulatory Information Layer in DNA. Angew. Chem., Int. Ed. 2018, 57, 4296–4312. 10.1002/anie.201708228. PubMed DOI

Bilyard M. K.; Becker S.; Balasubramanian S. Natural, modified DNA bases. Curr. Opin. Chem. Biol. 2020, 57, 1–7. 10.1016/j.cbpa.2020.01.014. PubMed DOI

Law J. A.; Jacobsen S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. 10.1038/nrg2719. PubMed DOI PMC

Lu J. X.; Zhao B. S.; He C. TET Family Proteins: Oxidation Activity, Interacting Molecules, and Functions in Diseases. Chem. Rev. 2015, 115, 2225–2239. 10.1021/cr500470n. PubMed DOI PMC

He Y.-F.; Li B.-Z.; Li Z.; Liu P.; Wang Y.; Tang Q.; Ding J.; Jia Y.; Chen Z.; Li L.; et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333, 1303–1307. 10.1126/science.1210944. PubMed DOI PMC

Hu L.; Lu J.; Cheng J.; Rao Q.; Li Z.; Hou H.; Lou Z.; Zhang L.; Li W.; Gong W.; et al. Structural insight into substrate preference for TET-mediated oxidation. Nature 2015, 527, 118–122. 10.1038/nature15713. PubMed DOI

Globisch D.; Münzel M.; Müller M.; Michalakis S.; Wagner M.; Koch S.; Brückl T.; Biel M.; Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 2010, 5, e15367.10.1371/journal.pone.0015367. PubMed DOI PMC

Wagner M.; Steinbacher J.; Kraus T. F. J.; Michalakis S.; Hackner B.; Pfaffeneder T.; Perera A.; Müller M.; Giese A.; Kretzschmar H. A.; et al. Age-dependent levels of 5-methyl-, 5-hydroxymethyl-, and 5-formylcytosine in human and mouse brain tissues. Angew. Chem., Int. Ed. 2015, 54, 12511–12514. 10.1002/anie.201502722. PubMed DOI PMC

Olinski R.; Starczak M.; Gackowski D. Enigmatic 5-hydroxymethyluracil: Oxidatively modified base, epigenetic mark or both?. Mutat. Res. 2016, 767, 59–66. 10.1016/j.mrrev.2016.02.001. PubMed DOI

Pfaffeneder T.; Spada F.; Wagner M.; Brandmayr C.; Laube S. K.; Eisen D.; Truss M.; Steinbacher J.; Hackner B.; Kotljarova O.; et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 2014, 10, 574–581. 10.1038/nchembio.1532. PubMed DOI

Djuric Z.; Heilbrun L. K.; Simon M. S.; Smith D.; Luongo D. A.; LoRusso P. M.; Martino S. Levels of 5-hydroxymethyl-2′-deoxyuridine in DNA from blood as a marker of breast cancer. Cancer 1996, 77, 691–696. 10.1002/(SICI)1097-0142(19960215)77:4<691::AID-CNCR15>3.0.CO;2-W. PubMed DOI

Kawasaki F.; Beraldi D.; Hardisty R. E.; McInroy G. R.; van Delft P.; Balasubramanian S. Genome-wide mapping of 5-hydroxymethyluracil in the eukaryote parasite Leishmania. Genome Biol. 2017, 18, 23.10.1186/s13059-017-1150-1. PubMed DOI PMC

Weigele P.; Raleigh E. A. Biosynthesis and function of modified bases in bacteria and their viruses. Chem. Rev. 2016, 116, 12655–12687. 10.1021/acs.chemrev.6b00114. PubMed DOI

Hutinet G.; Lee Y.-J.; de Crécy-Lagard V.; Weigele P. R. Hypermodified DNA in Viruses of E. coli and Salmonella. Ecosal Plus 2021, 9, eESP00282019.10.1128/ecosalplus.ESP-0028-2019. PubMed DOI PMC

Lee Y.-J.; Dai N.; Walsh S. E.; Müller S.; Fraser M. E.; Kauffman K. M.; Guan C.; Corrêa I. R.; Weigele P. R. Identification and biosynthesis of thymidine hypermodifications in the genomic DNA of widespread bacterial viruses. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, E3116–E3125. 10.1073/pnas.1714812115. PubMed DOI PMC

Janoušková M.; Vaníková Z.; Nici F.; Boháčová S.; Vítovská D.; Šanderová H.; Hocek M.; Krásný L. 5-(Hydroxymethyl)uracil and -cytosine as potential epigenetic marks enhancing or inhibiting transcription with bacterial RNA polymerase. Chem. Commun. 2017, 53, 13253–13255. 10.1039/C7CC08053K. PubMed DOI

Vaníková Z.; Janoušková M.; Kambová M.; Krásný L.; Hocek M. Switching transcription with bacterial RNA polymerase through photocaging, photorelease and phosphorylation reactions in the major groove of DNA. Chem. Sci. 2019, 10, 3937–3942. 10.1039/C9SC00205G. PubMed DOI PMC

Fujikawa K.; Kamiya H.; Kasai H. The mutations induced by oxidatively damaged nucleotides, 5-formyl-dUTP and 5-hydroxy-dCTP,in Escherichia coli. Nucleic Acids Res. 1998, 26, 4582–4587. 10.1093/nar/26.20.4582. PubMed DOI PMC

Rogstad D. K.; Heo J.; Vaidehi N.; Goddard W. A.; Burdzy A.; Sowers L. C. 5-Formyluracil-induced perturbations of DNA function. Biochemistry 2004, 43, 5688–5697. 10.1021/bi030247j. PubMed DOI

Yoshida M.; Makino K.; Morita H.; Terato H.; Ohyama Y.; Ide H. Substrate and mispairing properties of 5-formyl-2′-deoxyuridine 5′-triphosphate assessed by in vitro DNA polymerase reactions. Nucleic Acids Res. 1997, 25, 1570–1577. 10.1093/nar/25.8.1570. PubMed DOI PMC

Zeng H.; Qi C.-B.; Liu T.; Xiao H.-M.; Cheng Q.-Y.; Jiang H.-P.; Yuan B.-F.; Feng Y.-Q. Formation and Determination of Endogenous Methylated Nucleotides in Mammals by Chemical Labeling Coupled with Mass Spectrometry Analysis. Anal. Chem. 2017, 89, 4153–4160. 10.1021/acs.analchem.7b00052. PubMed DOI

Nyce J. Gene silencing in mammalian cells by direct incorporation of electroporated 5-methyl-2′-deoxycytidine 5′-triphosphate. Somat. Cell Mol. Genet. 1991, 17, 543–550. 10.1007/BF01233619. PubMed DOI

Holliday R.; Ho T. Gene silencing and endogenous DNA methylation in mammalian cells. Mutat. Res. 1998, 400, 361–368. 10.1016/S0027-5107(98)00034-7. PubMed DOI

Holliday R.; Ho T. Evidence for gene silencing by endogenous DNA methylation. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 8727–8732. 10.1073/pnas.95.15.8727. PubMed DOI PMC

Vilpo J. A.; Vilpo L. M. Prevention of DNA 5-methylcytosine reutilization in human cells. Somat. Cell Mol. Genet. 1995, 21, 285–288. 10.1007/BF02255783. PubMed DOI

Jost J. P.; Thiry S.; Siegmann M. 5-Methyldeoxycytidine monophosphate deaminase and 5-methylcytidyl-DNA deaminase activities are present in human mature sperm cells. FEBS Lett. 2002, 519, 128–134. 10.1016/S0014-5793(02)02737-0. PubMed DOI

Vilpo J. A.; Vilpo L. M. Nucleoside monophosphate kinase may be the key enzyme preventing salvage of DNA 5-methylcytosine. Mutat. Res. 1993, 286, 217–220. 10.1016/0027-5107(93)90186-J. PubMed DOI

Hottin A.; Marx A. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Acc. Chem. Res. 2016, 49, 418–427. 10.1021/acs.accounts.5b00544. PubMed DOI

Hocek M. Enzymatic Synthesis of Base-Functionalized Nucleic Acids for Sensing, Cross-linking, and Modulation of Protein-DNA Binding and Transcription. Acc. Chem. Res. 2019, 52, 1730–1737. 10.1021/acs.accounts.9b00195. PubMed DOI

Kielkowski P.; Fanfrlík J.; Hocek M. 7-Aryl-7-deazaadenine 2′-deoxyribonucleoside triphosphates (dNTPs): better substrates for DNA polymerases than dATP in competitive incorporations. Angew. Chem., Int. Ed. 2014, 53, 7552–7555. 10.1002/anie.201404742. PubMed DOI

Cahová H.; Panattoni A.; Kielkowski P.; Fanfrlík J.; Hocek M. 5-Substituted Pyrimidine and 7-Substituted 7-Deazapurine dNTPs as Substrates for DNA Polymerases in Competitive Primer Extension in the Presence of Natural dNTPs. ACS Chem. Biol. 2016, 11, 3165–3171. 10.1021/acschembio.6b00714. PubMed DOI

Bergen K.; Steck A.-L.; Strütt S.; Baccaro A.; Welte W.; Diederichs K.; Marx A. Structures of KlenTaq DNA polymerase caught while incorporating C5-modified pyrimidine and C7-modified 7-deazapurine nucleoside triphosphates. J. Am. Chem. Soc. 2012, 134, 11840–11843. 10.1021/ja3017889. PubMed DOI

Hottin A.; Betz K.; Diederichs K.; Marx A. Structural Basis for the KlenTaq DNA Polymerase Catalysed Incorporation of Alkene- versus Alkyne-Modified Nucleotides. Chem.—Eur. J. 2017, 23, 2109–2118. 10.1002/chem.201604515. PubMed DOI

Macícková-Cahová H.; Hocek M. Cleavage of adenine-modified functionalized DNA by type II restriction endonucleases. Nucleic Acids Res. 2009, 37, 7612–7622. 10.1093/nar/gkp845. PubMed DOI PMC

Kielkowski P.; Macíčková-Cahová H.; Pohl R.; Hocek M. Transient and switchable (triethylsilyl)ethynyl protection of DNA against cleavage by restriction endonucleases. Angew. Chem., Int. Ed. 2011, 50, 8727–8730. 10.1002/anie.201102898. PubMed DOI

Macíčková-Cahová H.; Pohl R.; Hocek M. Cleavage of functionalized DNA containing 5-modified pyrimidines by type II restriction endonucleases. ChemBioChem. 2011, 12, 431–438. 10.1002/cbic.201000644. PubMed DOI

Steigenberger B.; Schiesser S.; Hackner B.; Brandmayr C.; Laube S. K.; Steinbacher J.; Pfaffeneder T.; Carell T. Synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxycytidine-triphosphates and their incorporation into oligonucleotides by polymerase chain reaction. Org. Lett. 2013, 15, 366–369. 10.1021/ol3033219. PubMed DOI

Sun Q.; Sun J.; Gong S.-S.; Wang C.-J.; Pu S.-Z.; Feng F.-D. Efficient synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxyl-2′-deoxycytidine and their triphosphates. RSC Adv. 2014, 4, 36036–36039. 10.1039/C4RA07670B. DOI

Vaníková Z.; Hocek M. Polymerase synthesis of photocaged DNA resistant against cleavage by restriction endonucleases. Angew. Chem., Int. Ed. 2014, 53, 6734–6737. 10.1002/anie.201402370. PubMed DOI

Sowers L. C.; Beardsley G. P. Synthesis of oligonucleotides containing 5-(hydroxymethyl)-2′-deoxyuridine at defined sites. J. Org. Chem. 1993, 58, 1664–1665. 10.1021/jo00059a011. PubMed DOI PMC

Schiesser S.; Pfaffeneder T.; Sadeghian K.; Hackner B.; Steigenberger B.; Schröder A. S.; Steinbacher J.; Kashiwazaki G.; Höfner G.; Wanner K. T.; et al. Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. J. Am. Chem. Soc. 2013, 135, 14593–14599. 10.1021/ja403229y. PubMed DOI

Scarlato V.; Gargano S. The DNA polymerase-encoding gene of Bacillus subtilis bacteriophage SPO1. Gene 1992, 118, 109–113. 10.1016/0378-1119(92)90256-O. PubMed DOI

Stewart C. R.; Casjens S. R.; Cresawn S. G.; Houtz J. M.; Smith A. L.; Ford M. E.; Peebles C. L.; Hatfull G. F.; Hendrix R. W.; Huang W. M.; et al. The genome of Bacillus subtilis bacteriophage SPO1. J. Mol. Biol. 2009, 388, 48–70. 10.1016/j.jmb.2009.03.009. PubMed DOI PMC

Flodman K.; Tsai R.; Xu M. Y.; Corrêa I. R.; Copelas A.; Lee Y.-J.; Xu M.-Q.; Weigele P.; Xu S.-Y. Type II Restriction of Bacteriophage DNA With 5hmdU-Derived Base Modifications. Front. Microbiol. 2019, 10, 584.10.3389/fmicb.2019.00584. PubMed DOI PMC

Flodman K.; Corrêa I. R.; Dai N.; Weigele P.; Xu S.-Y. In vitro Type II Restriction of Bacteriophage DNA With Modified Pyrimidines. Front. Microbiol. 2020, 11, 604618.10.3389/fmicb.2020.604618. PubMed DOI PMC

Liu C.; Wang Y.; Zhang X.; Wu F.; Yang W.; Zou G.; Yao Q.; Wang J.; Chen Y.; Wang S.; Zhou X. Enrichment and fluorogenic labelling of 5-formyluracil in DNA. Chem. Sci. 2017, 8, 4505–4510. 10.1039/C7SC00637C. PubMed DOI PMC

Booth M. J.; Branco M. R.; Ficz G.; Oxley D.; Krueger F.; Reik W.; Balasubramanian S. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012, 336, 934–937. 10.1126/science.1220671. PubMed DOI

Raiber E.-A.; Portella G.; Martínez Cuesta S.; Hardisty R.; Murat P.; Li Z.; Iurlaro M.; Dean W.; Spindel J.; Beraldi D.; et al. 5-Formylcytosine organizes nucleosomes and forms Schiff base interactions with histones in mouse embryonic stem cells. Nat. Chem. 2018, 10, 1258–1266. 10.1038/s41557-018-0149-x. PubMed DOI

Zawada Z.; Tatar A.; Mocilac P.; Buděšínský M.; Kraus T. Transport of Nucleoside Triphosphates into Cells by Artificial Molecular Transporters. Angew. Chem., Int. Ed. 2018, 57, 9891–9895. 10.1002/anie.201801306. PubMed DOI

Gollnest T.; de Oliveira T. D.; Schols D.; Balzarini J.; Meier C. Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals. Nat. Commun. 2015, 6, 8716.10.1038/ncomms9716. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...