Epigenetic Pyrimidine Nucleotides in Competition with Natural dNTPs as Substrates for Diverse DNA Polymerases
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35679536
PubMed Central
PMC9594043
DOI
10.1021/acschembio.2c00342
Knihovny.cz E-zdroje
- MeSH
- 5-methylcytosin * MeSH
- deoxyribonukleosidy MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- DNA metabolismus MeSH
- epigeneze genetická MeSH
- nukleotidy metabolismus MeSH
- pyrimidinové nukleotidy * MeSH
- pyrimidiny MeSH
- restrikční enzymy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5-methylcytosin * MeSH
- deoxyribonukleosidy MeSH
- DNA-dependentní DNA-polymerasy MeSH
- DNA MeSH
- nukleotidy MeSH
- pyrimidinové nukleotidy * MeSH
- pyrimidiny MeSH
- restrikční enzymy MeSH
Five 2'-deoxyribonucleoside triphosphates (dNTPs) derived from epigenetic pyrimidines (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, 5-hydroxymethyluracil, and 5-formyluracil) were prepared and systematically studied as substrates for nine DNA polymerases in competition with natural dNTPs by primer extension experiments. The incorporation of these substrates was evaluated by a restriction endonucleases cleavage-based assay and by a kinetic study of single nucleotide extension. All of the modified pyrimidine dNTPs were good substrates for the studied DNA polymerases that incorporated a significant percentage of the modified nucleotides into DNA even in the presence of natural nucleotides. 5-Methylcytosine dNTP was an even better substrate for most polymerases than natural dCTP. On the other hand, 5-hydroxymethyl-2'-deoxyuridine triphosphate was not the best substrate for SPO1 DNA polymerase, which naturally synthesizes 5hmU-rich genomes of the SPO1 bacteriophage. The results shed light onto the possibility of gene silencing through recycling and random incorporation of epigenetic nucleotides and into the replication of modified bacteriophage genomes.
Zobrazit více v PubMed
Chen K.; Zhao B. S.; He C. Nucleic acid modifications in regulation of gene expression. Cell Chem. Biol. 2016, 23, 74–85. 10.1016/j.chembiol.2015.11.007. PubMed DOI PMC
Carell T.; Kurz M. Q.; Müller M.; Rossa M.; Spada F. Non-canonical Bases in the Genome: The Regulatory Information Layer in DNA. Angew. Chem., Int. Ed. 2018, 57, 4296–4312. 10.1002/anie.201708228. PubMed DOI
Bilyard M. K.; Becker S.; Balasubramanian S. Natural, modified DNA bases. Curr. Opin. Chem. Biol. 2020, 57, 1–7. 10.1016/j.cbpa.2020.01.014. PubMed DOI
Law J. A.; Jacobsen S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11, 204–220. 10.1038/nrg2719. PubMed DOI PMC
Lu J. X.; Zhao B. S.; He C. TET Family Proteins: Oxidation Activity, Interacting Molecules, and Functions in Diseases. Chem. Rev. 2015, 115, 2225–2239. 10.1021/cr500470n. PubMed DOI PMC
He Y.-F.; Li B.-Z.; Li Z.; Liu P.; Wang Y.; Tang Q.; Ding J.; Jia Y.; Chen Z.; Li L.; et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333, 1303–1307. 10.1126/science.1210944. PubMed DOI PMC
Hu L.; Lu J.; Cheng J.; Rao Q.; Li Z.; Hou H.; Lou Z.; Zhang L.; Li W.; Gong W.; et al. Structural insight into substrate preference for TET-mediated oxidation. Nature 2015, 527, 118–122. 10.1038/nature15713. PubMed DOI
Globisch D.; Münzel M.; Müller M.; Michalakis S.; Wagner M.; Koch S.; Brückl T.; Biel M.; Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One 2010, 5, e15367.10.1371/journal.pone.0015367. PubMed DOI PMC
Wagner M.; Steinbacher J.; Kraus T. F. J.; Michalakis S.; Hackner B.; Pfaffeneder T.; Perera A.; Müller M.; Giese A.; Kretzschmar H. A.; et al. Age-dependent levels of 5-methyl-, 5-hydroxymethyl-, and 5-formylcytosine in human and mouse brain tissues. Angew. Chem., Int. Ed. 2015, 54, 12511–12514. 10.1002/anie.201502722. PubMed DOI PMC
Olinski R.; Starczak M.; Gackowski D. Enigmatic 5-hydroxymethyluracil: Oxidatively modified base, epigenetic mark or both?. Mutat. Res. 2016, 767, 59–66. 10.1016/j.mrrev.2016.02.001. PubMed DOI
Pfaffeneder T.; Spada F.; Wagner M.; Brandmayr C.; Laube S. K.; Eisen D.; Truss M.; Steinbacher J.; Hackner B.; Kotljarova O.; et al. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 2014, 10, 574–581. 10.1038/nchembio.1532. PubMed DOI
Djuric Z.; Heilbrun L. K.; Simon M. S.; Smith D.; Luongo D. A.; LoRusso P. M.; Martino S. Levels of 5-hydroxymethyl-2′-deoxyuridine in DNA from blood as a marker of breast cancer. Cancer 1996, 77, 691–696. 10.1002/(SICI)1097-0142(19960215)77:4<691::AID-CNCR15>3.0.CO;2-W. PubMed DOI
Kawasaki F.; Beraldi D.; Hardisty R. E.; McInroy G. R.; van Delft P.; Balasubramanian S. Genome-wide mapping of 5-hydroxymethyluracil in the eukaryote parasite Leishmania. Genome Biol. 2017, 18, 23.10.1186/s13059-017-1150-1. PubMed DOI PMC
Weigele P.; Raleigh E. A. Biosynthesis and function of modified bases in bacteria and their viruses. Chem. Rev. 2016, 116, 12655–12687. 10.1021/acs.chemrev.6b00114. PubMed DOI
Hutinet G.; Lee Y.-J.; de Crécy-Lagard V.; Weigele P. R. Hypermodified DNA in Viruses of E. coli and Salmonella. Ecosal Plus 2021, 9, eESP00282019.10.1128/ecosalplus.ESP-0028-2019. PubMed DOI PMC
Lee Y.-J.; Dai N.; Walsh S. E.; Müller S.; Fraser M. E.; Kauffman K. M.; Guan C.; Corrêa I. R.; Weigele P. R. Identification and biosynthesis of thymidine hypermodifications in the genomic DNA of widespread bacterial viruses. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, E3116–E3125. 10.1073/pnas.1714812115. PubMed DOI PMC
Janoušková M.; Vaníková Z.; Nici F.; Boháčová S.; Vítovská D.; Šanderová H.; Hocek M.; Krásný L. 5-(Hydroxymethyl)uracil and -cytosine as potential epigenetic marks enhancing or inhibiting transcription with bacterial RNA polymerase. Chem. Commun. 2017, 53, 13253–13255. 10.1039/C7CC08053K. PubMed DOI
Vaníková Z.; Janoušková M.; Kambová M.; Krásný L.; Hocek M. Switching transcription with bacterial RNA polymerase through photocaging, photorelease and phosphorylation reactions in the major groove of DNA. Chem. Sci. 2019, 10, 3937–3942. 10.1039/C9SC00205G. PubMed DOI PMC
Fujikawa K.; Kamiya H.; Kasai H. The mutations induced by oxidatively damaged nucleotides, 5-formyl-dUTP and 5-hydroxy-dCTP,in Escherichia coli. Nucleic Acids Res. 1998, 26, 4582–4587. 10.1093/nar/26.20.4582. PubMed DOI PMC
Rogstad D. K.; Heo J.; Vaidehi N.; Goddard W. A.; Burdzy A.; Sowers L. C. 5-Formyluracil-induced perturbations of DNA function. Biochemistry 2004, 43, 5688–5697. 10.1021/bi030247j. PubMed DOI
Yoshida M.; Makino K.; Morita H.; Terato H.; Ohyama Y.; Ide H. Substrate and mispairing properties of 5-formyl-2′-deoxyuridine 5′-triphosphate assessed by in vitro DNA polymerase reactions. Nucleic Acids Res. 1997, 25, 1570–1577. 10.1093/nar/25.8.1570. PubMed DOI PMC
Zeng H.; Qi C.-B.; Liu T.; Xiao H.-M.; Cheng Q.-Y.; Jiang H.-P.; Yuan B.-F.; Feng Y.-Q. Formation and Determination of Endogenous Methylated Nucleotides in Mammals by Chemical Labeling Coupled with Mass Spectrometry Analysis. Anal. Chem. 2017, 89, 4153–4160. 10.1021/acs.analchem.7b00052. PubMed DOI
Nyce J. Gene silencing in mammalian cells by direct incorporation of electroporated 5-methyl-2′-deoxycytidine 5′-triphosphate. Somat. Cell Mol. Genet. 1991, 17, 543–550. 10.1007/BF01233619. PubMed DOI
Holliday R.; Ho T. Gene silencing and endogenous DNA methylation in mammalian cells. Mutat. Res. 1998, 400, 361–368. 10.1016/S0027-5107(98)00034-7. PubMed DOI
Holliday R.; Ho T. Evidence for gene silencing by endogenous DNA methylation. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 8727–8732. 10.1073/pnas.95.15.8727. PubMed DOI PMC
Vilpo J. A.; Vilpo L. M. Prevention of DNA 5-methylcytosine reutilization in human cells. Somat. Cell Mol. Genet. 1995, 21, 285–288. 10.1007/BF02255783. PubMed DOI
Jost J. P.; Thiry S.; Siegmann M. 5-Methyldeoxycytidine monophosphate deaminase and 5-methylcytidyl-DNA deaminase activities are present in human mature sperm cells. FEBS Lett. 2002, 519, 128–134. 10.1016/S0014-5793(02)02737-0. PubMed DOI
Vilpo J. A.; Vilpo L. M. Nucleoside monophosphate kinase may be the key enzyme preventing salvage of DNA 5-methylcytosine. Mutat. Res. 1993, 286, 217–220. 10.1016/0027-5107(93)90186-J. PubMed DOI
Hottin A.; Marx A. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Acc. Chem. Res. 2016, 49, 418–427. 10.1021/acs.accounts.5b00544. PubMed DOI
Hocek M. Enzymatic Synthesis of Base-Functionalized Nucleic Acids for Sensing, Cross-linking, and Modulation of Protein-DNA Binding and Transcription. Acc. Chem. Res. 2019, 52, 1730–1737. 10.1021/acs.accounts.9b00195. PubMed DOI
Kielkowski P.; Fanfrlík J.; Hocek M. 7-Aryl-7-deazaadenine 2′-deoxyribonucleoside triphosphates (dNTPs): better substrates for DNA polymerases than dATP in competitive incorporations. Angew. Chem., Int. Ed. 2014, 53, 7552–7555. 10.1002/anie.201404742. PubMed DOI
Cahová H.; Panattoni A.; Kielkowski P.; Fanfrlík J.; Hocek M. 5-Substituted Pyrimidine and 7-Substituted 7-Deazapurine dNTPs as Substrates for DNA Polymerases in Competitive Primer Extension in the Presence of Natural dNTPs. ACS Chem. Biol. 2016, 11, 3165–3171. 10.1021/acschembio.6b00714. PubMed DOI
Bergen K.; Steck A.-L.; Strütt S.; Baccaro A.; Welte W.; Diederichs K.; Marx A. Structures of KlenTaq DNA polymerase caught while incorporating C5-modified pyrimidine and C7-modified 7-deazapurine nucleoside triphosphates. J. Am. Chem. Soc. 2012, 134, 11840–11843. 10.1021/ja3017889. PubMed DOI
Hottin A.; Betz K.; Diederichs K.; Marx A. Structural Basis for the KlenTaq DNA Polymerase Catalysed Incorporation of Alkene- versus Alkyne-Modified Nucleotides. Chem.—Eur. J. 2017, 23, 2109–2118. 10.1002/chem.201604515. PubMed DOI
Macícková-Cahová H.; Hocek M. Cleavage of adenine-modified functionalized DNA by type II restriction endonucleases. Nucleic Acids Res. 2009, 37, 7612–7622. 10.1093/nar/gkp845. PubMed DOI PMC
Kielkowski P.; Macíčková-Cahová H.; Pohl R.; Hocek M. Transient and switchable (triethylsilyl)ethynyl protection of DNA against cleavage by restriction endonucleases. Angew. Chem., Int. Ed. 2011, 50, 8727–8730. 10.1002/anie.201102898. PubMed DOI
Macíčková-Cahová H.; Pohl R.; Hocek M. Cleavage of functionalized DNA containing 5-modified pyrimidines by type II restriction endonucleases. ChemBioChem. 2011, 12, 431–438. 10.1002/cbic.201000644. PubMed DOI
Steigenberger B.; Schiesser S.; Hackner B.; Brandmayr C.; Laube S. K.; Steinbacher J.; Pfaffeneder T.; Carell T. Synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxycytidine-triphosphates and their incorporation into oligonucleotides by polymerase chain reaction. Org. Lett. 2013, 15, 366–369. 10.1021/ol3033219. PubMed DOI
Sun Q.; Sun J.; Gong S.-S.; Wang C.-J.; Pu S.-Z.; Feng F.-D. Efficient synthesis of 5-hydroxymethyl-, 5-formyl-, and 5-carboxyl-2′-deoxycytidine and their triphosphates. RSC Adv. 2014, 4, 36036–36039. 10.1039/C4RA07670B. DOI
Vaníková Z.; Hocek M. Polymerase synthesis of photocaged DNA resistant against cleavage by restriction endonucleases. Angew. Chem., Int. Ed. 2014, 53, 6734–6737. 10.1002/anie.201402370. PubMed DOI
Sowers L. C.; Beardsley G. P. Synthesis of oligonucleotides containing 5-(hydroxymethyl)-2′-deoxyuridine at defined sites. J. Org. Chem. 1993, 58, 1664–1665. 10.1021/jo00059a011. PubMed DOI PMC
Schiesser S.; Pfaffeneder T.; Sadeghian K.; Hackner B.; Steigenberger B.; Schröder A. S.; Steinbacher J.; Kashiwazaki G.; Höfner G.; Wanner K. T.; et al. Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. J. Am. Chem. Soc. 2013, 135, 14593–14599. 10.1021/ja403229y. PubMed DOI
Scarlato V.; Gargano S. The DNA polymerase-encoding gene of Bacillus subtilis bacteriophage SPO1. Gene 1992, 118, 109–113. 10.1016/0378-1119(92)90256-O. PubMed DOI
Stewart C. R.; Casjens S. R.; Cresawn S. G.; Houtz J. M.; Smith A. L.; Ford M. E.; Peebles C. L.; Hatfull G. F.; Hendrix R. W.; Huang W. M.; et al. The genome of Bacillus subtilis bacteriophage SPO1. J. Mol. Biol. 2009, 388, 48–70. 10.1016/j.jmb.2009.03.009. PubMed DOI PMC
Flodman K.; Tsai R.; Xu M. Y.; Corrêa I. R.; Copelas A.; Lee Y.-J.; Xu M.-Q.; Weigele P.; Xu S.-Y. Type II Restriction of Bacteriophage DNA With 5hmdU-Derived Base Modifications. Front. Microbiol. 2019, 10, 584.10.3389/fmicb.2019.00584. PubMed DOI PMC
Flodman K.; Corrêa I. R.; Dai N.; Weigele P.; Xu S.-Y. In vitro Type II Restriction of Bacteriophage DNA With Modified Pyrimidines. Front. Microbiol. 2020, 11, 604618.10.3389/fmicb.2020.604618. PubMed DOI PMC
Liu C.; Wang Y.; Zhang X.; Wu F.; Yang W.; Zou G.; Yao Q.; Wang J.; Chen Y.; Wang S.; Zhou X. Enrichment and fluorogenic labelling of 5-formyluracil in DNA. Chem. Sci. 2017, 8, 4505–4510. 10.1039/C7SC00637C. PubMed DOI PMC
Booth M. J.; Branco M. R.; Ficz G.; Oxley D.; Krueger F.; Reik W.; Balasubramanian S. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012, 336, 934–937. 10.1126/science.1220671. PubMed DOI
Raiber E.-A.; Portella G.; Martínez Cuesta S.; Hardisty R.; Murat P.; Li Z.; Iurlaro M.; Dean W.; Spindel J.; Beraldi D.; et al. 5-Formylcytosine organizes nucleosomes and forms Schiff base interactions with histones in mouse embryonic stem cells. Nat. Chem. 2018, 10, 1258–1266. 10.1038/s41557-018-0149-x. PubMed DOI
Zawada Z.; Tatar A.; Mocilac P.; Buděšínský M.; Kraus T. Transport of Nucleoside Triphosphates into Cells by Artificial Molecular Transporters. Angew. Chem., Int. Ed. 2018, 57, 9891–9895. 10.1002/anie.201801306. PubMed DOI
Gollnest T.; de Oliveira T. D.; Schols D.; Balzarini J.; Meier C. Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals. Nat. Commun. 2015, 6, 8716.10.1038/ncomms9716. PubMed DOI PMC