Homologues of epigenetic pyrimidines: 5-alkyl-, 5-hydroxyalkyl and 5-acyluracil and -cytosine nucleotides: synthesis, enzymatic incorporation into DNA and effect on transcription with bacterial RNA polymerase
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
35975001
PubMed Central
PMC9347353
DOI
10.1039/d2cb00133k
PII: d2cb00133k
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Homologues of natural epigenetic pyrimidine nucleosides and nucleotides were designed and synthesized. They included 5-ethyl-, 5-propyl-, 5-(1-hydroxyethyl)-, 5-(1-hydroxypropyl)- and 5-acetyl- and 5-propionylcytosine and -uracil 2'-deoxyribonucleosides and their corresponding 5'-O-triphosphates (dNXTPs). The epimers of 5-(1-hydroxyethyl)- and 5-(1-hydroxypropyl)pyrimidine nucleosides were separated and their absolute configuration was determined by a combination of X-ray and NMR analysis. The modified dNXTPs were used as substrates for PCR synthesis of modified DNA templates used for the study of transcription with bacterial RNA polymerase. Fundamental differences in transcription efficiency were observed, depending on the various modifications. The most notable effects included pronounced stimulation of transcription from 5-ethyluracil-bearing templates (200% transcription yield compared to natural thymine) and an enhancing effect of 5-acetylcytosine versus inhibiting effect of 5-acetyluracil. In summary, these results reveal that RNA polymerase copes with dramatically altered DNA structure and suggest that these nucleobases could potentially play roles as artificial epigenetic DNA nucleobases.
See more in PubMed
Chen K. Zhao B. S. He C. Cell Chem. Biol. 2016;23:74–85. doi: 10.1016/j.chembiol.2015.11.007. PubMed DOI PMC
Bilyard M. K. Becker S. Balasubramanian S. Curr. Opin. Chem. Biol. 2020;57:1–7. doi: 10.1016/j.cbpa.2020.01.014. PubMed DOI
Raiber E.-A. Hardisty R. van Delft P. Balasubramanian S. Nat. Rev. Chem. 2017;1:0069. doi: 10.1038/s41570-017-0069. DOI
Luo C. Hajkova P. Ecker J. R. Science. 2018;361:1336–1340. doi: 10.1126/science.aat6806. PubMed DOI PMC
Law J. A. Jacobsen S. E. Nat. Rev. Genet. 2010;11:204–220. doi: 10.1038/nrg2719. PubMed DOI PMC
Carell T. Kurz M. Q. Müller M. Rossa M. Spada F. Angew. Chem., Int. Ed. 2018;57:4296–4312. doi: 10.1002/anie.201708228. PubMed DOI
Münzel M. Globisch D. Carell T. Angew. Chem., Int. Ed. 2011;50:6460–6468. doi: 10.1002/anie.201101547. PubMed DOI
Globisch D. Münzel M. Müller M. Michalakis S. Wagner M. Koch S. Brückl T. Biel M. Carell T. PLoS One. 2010;5:e15367. doi: 10.1371/journal.pone.0015367. PubMed DOI PMC
Raiber E.-A. Murat P. Chirgadze D. Y. Beraldi D. Luisi B. F. Balasubramanian S. Nat. Struct. Mol. Biol. 2015;22:44–49. doi: 10.1038/nsmb.2936. PubMed DOI PMC
Wang L. Zhou Y. Xu L. Xiao R. Lu X. Chen L. Chong J. Li H. He C. Fu X.-D. Wang D. Nature. 2015;523:621–625. doi: 10.1038/nature14482. PubMed DOI PMC
Lu X. Zhao B. S. He C. Chem. Rev. 2015;115:2225–2239. doi: 10.1021/cr500470n. PubMed DOI PMC
He Y.-F. Li B.-Z. Li Z. Liu P. Wang Y. Tang Q. Ding J. Jia Y. Chen Z. Li L. Sun Y. Li X. Dai Q. Song C.-X. Zhang K. He C. Xu G.-L. Science. 2011;333:1303–1307. doi: 10.1126/science.1210944. PubMed DOI PMC
Hu L. Lu J. Cheng J. Rao Q. Li Z. Hou H. Lou Z. Zhang L. Li W. Gong W. Liu M. Sun C. Yin X. Li J. Tan X. Wang P. Wang Y. Fang D. Cui Q. Yang P. He C. Jiang H. Luo C. Xu Y. Nature. 2015;527:118–122. doi: 10.1038/nature15713. PubMed DOI
Schiesser S. Pfaffeneder T. Sadeghian K. Hackner B. Steigenberger B. Schröder A. S. Steinbacher J. Kashiwazaki G. Höfner G. Wanner K. T. Ochsenfeld C. Carell T. J. Am. Chem. Soc. 2013;135:14593–14599. doi: 10.1021/ja403229y. PubMed DOI
Schön A. Kaminska E. Schelter F. Ponkkonen E. Korytiaková E. Schiffers S. Carell T. Angew. Chem., Int. Ed. 2020;59:5591–5594. doi: 10.1002/anie.202000414. PubMed DOI PMC
Bachman M. Uribe-Lewis S. Yang X. Burgess H. E. Iurlaro M. Reik W. Murrell A. Balasubramanian S. Nat. Chem. Biol. 2015;11:555–557. doi: 10.1038/nchembio.1848. PubMed DOI PMC
Su M. Kirchner A. Stazzoni S. Müller M. Wagner M. Schröder A. Carell T. Angew. Chem., Int. Ed. 2016;55:11797–11800. doi: 10.1002/anie.201605994. PubMed DOI
Lercher L. McDonough M. A. El-Sagheer A. H. Thalhammer A. Kriaucionis S. Brown T. Schofield C. J. Chem. Commun. 2014;50:1794–1796. doi: 10.1039/C3CC48151D. PubMed DOI
Perera A. Eisen D. Wagner M. Laube S. K. Künzel A. F. Koch S. Steinbacher J. Schulze E. Splith V. Mittermeier N. Müller M. Biel M. Carell T. Michalakis S. Cell Rep. 2015;11:283–294. doi: 10.1016/j.celrep.2015.03.020. PubMed DOI
Kitsera N. Allgayer J. Parsa E. Geier N. Rossa M. Carell T. Khobta A. Nucleic Acids Res. 2017;45:11033–11042. doi: 10.1093/nar/gkx718. PubMed DOI PMC
Pfaffeneder T. Spada F. Wagner M. Brandmayr C. Laube S. K. Eisen D. Truss M. Steinbacher J. Hackner B. Kotljarova O. Schuermann D. Michalakis S. Kosmatchev O. Schiesser S. Steigenberger B. Raddaoui N. Kashiwazaki G. Müller U. Spruijt C. G. Vermeulen M. Leonhardt H. Schär P. Müller M. Carell T. Nat. Chem. Biol. 2014;10:574–581. doi: 10.1038/nchembio.1532. PubMed DOI
Djuric Z. Heilbrun L. K. Simon M. S. Smith D. Luongo D. A. LoRusso P. M. Martino S. Cancer. 1996;77:691–696. doi: 10.1002/(SICI)1097-0142(19960215)77:4<691::AID-CNCR15>3.0.CO;2-W. PubMed DOI
Kawasaki F. Beraldi D. Hardisty R. E. McInroy G. R. van Delft P. Balasubramanian S. Genome Biol. 2017;18:23. doi: 10.1186/s13059-017-1150-1. PubMed DOI PMC
Weigele P. Raleigh E. A. Chem. Rev. 2016;116:12655–12687. doi: 10.1021/acs.chemrev.6b00114. PubMed DOI
Hutinet G. Lee Y.-J. de Crécy-Lagard V. Weigele P. R. EcoSal Plus. 2021;9:eESP00282019. doi: 10.1128/ecosalplus.ESP-0028-2019. PubMed DOI PMC
Olinski R. Starczak M. Gackowski D. Mutat. Res. 2016;767:59–66. PubMed
Fujikawa K. Kamiya H. Kasai H. Nucleic Acids Res. 1998;26:4582–4587. doi: 10.1093/nar/26.20.4582. PubMed DOI PMC
Rogstad D. K. Heo J. Vaidehi N. Goddard W. A. Burdzy A. Sowers L. C. Biochemistry. 2004;43:5688–5697. doi: 10.1021/bi030247j. PubMed DOI
Raindlová V. Janoušková M. Slavíčková M. Perlíková P. Boháčová S. Milisavljevič N. Šanderová H. Benda M. Barvík I. Krásný L. Hocek M. Nucleic Acids Res. 2016;44:3000–3012. doi: 10.1093/nar/gkw171. PubMed DOI PMC
Janoušková M. Vaníková Z. Nici F. Boháčová S. Vítovská D. Šanderová H. Hocek M. Krásný L. Chem. Commun. 2017;53:13253–13255. doi: 10.1039/C7CC08053K. PubMed DOI
Vaníková Z. Janoušková M. Kambová M. Krásný L. Hocek M. Chem. Sci. 2019;10:3937–3942. doi: 10.1039/C9SC00205G. PubMed DOI PMC
Chakrapani A. Vaňková Hausnerová V. Ruiz-Larrabeiti O. Pohl R. Krásný L. Hocek M. Org. Lett. 2020;22:9081–9085. doi: 10.1021/acs.orglett.0c03462. PubMed DOI
Lee Y.-J. Dai N. Müller S. I. Guan C. Parker M. J. Fraser M. E. Walsh S. E. Sridar J. Mulholland A. Nayak K. Sun Z. Lin Y.-C. Comb D. G. Marks K. Gonzalez R. Dowling D. P. Bandarian V. Saleh L. Corrêa I. R. Weigele P. R. Nucleic Acids Res. 2022;50:3001–3017. doi: 10.1093/nar/gkab781. PubMed DOI PMC
Kornberg S. R. Zimmerman S. B. Kornberg A. J. Biol. Chem. 1961;236:1487–1493. doi: 10.1016/S0021-9258(18)64202-4. PubMed DOI
Tomaschewski J. Gram H. Crabb J. W. Rüger W. Nucleic Acids Res. 1985;13:7551–7568. doi: 10.1093/nar/13.21.7551. PubMed DOI PMC
Chakrapani A. Ruiz-Larrabeiti O. Pohl R. Svoboda M. Krásný L. Hocek M. Chem. – Eur. J. 2022;28:e202200911. doi: 10.1002/chem.202200911. PubMed DOI
Kavoosi S. Sudhamalla B. Dey D. Shriver K. Arora S. Sappa S. Islam K. Chem. Sci. 2019;10:10550–10555. doi: 10.1039/C9SC02629K. PubMed DOI PMC
Steigenberger B. Schiesser S. Hackner B. Brandmayr C. Laube S. K. Steinbacher J. Pfaffeneder T. Carell T. Org. Lett. 2013;15:366–369. doi: 10.1021/ol3033219. PubMed DOI
Macíčková-Cahová H. Pohl R. Hocek M. ChemBioChem. 2011;12:431–438. doi: 10.1002/cbic.201000644. PubMed DOI
Mačková M. Pohl R. Hocek M. ChemBioChem. 2014;15:2306–2312. doi: 10.1002/cbic.201402319. PubMed DOI
Kulikowski T. Shugar D. J. Med. Chem. 1974;17:269–273. doi: 10.1021/jm00249a003. PubMed DOI
Jones A. S. Slater M. J. Walker R. T. J. Chem. Soc., Perkin Trans. 1. 1987:1325–1329. doi: 10.1039/P19870001325. DOI
Chentsova A. Kapourani E. Giannis A. Beilstein J. Org. Chem. 2014;10:7–11. doi: 10.3762/bjoc.10.2. PubMed DOI PMC
Robins M. J. Barr P. J. J. Org. Chem. 1983;48:1854–1862. doi: 10.1021/jo00159a012. DOI
Ingale S. A. Mei H. Leonard P. Seela F. J. Org. Chem. 2013;78:11271–11282. doi: 10.1021/jo401780u. PubMed DOI
Luche J.-L. Rodriguez-Hahn L. Crabbé P. J. Chem. Soc., Chem. Commun. 1978:601–602. doi: 10.1039/C39780000601. DOI
Zheng X.-A. Huang H.-S. Kong R. Chen W.-J. Gong S.-S. Sun Q. Tetrahedron. 2018;74:7095–7101. doi: 10.1016/j.tet.2018.10.046. DOI
Froehler B. C. Wadwani S. Terhorst T. J. Gerrard S. R. Tetrahedron Lett. 1992;33:5307–5310. doi: 10.1016/S0040-4039(00)79079-4. DOI
Ruth J. L. Bergstrom D. E. J. Org. Chem. 1978;43:2870–2876. doi: 10.1021/jo00408a026. DOI
Crouch G. J. Eaton B. E. Nucleosides Nucleotides. 1994;13:939–944. doi: 10.1080/15257779408011867. DOI
Ludwig J. Acta Biochim. Biophys. Hung. 1981;16:131–133. PubMed
Sojka L. Kouba T. Barvík I. Šanderová H. Maderová Z. Jonák J. Krásný L. Nucleic Acids Res. 2011;39:4598–4611. doi: 10.1093/nar/gkr032. PubMed DOI PMC
Raiber E.-A. Portella G. Martínez Cuesta S. Hardisty R. Murat P. Li Z. Iurlaro M. Dean W. Spindel J. Beraldi D. Liu Z. Dawson M. A. Reik W. Balasubramanian S. Nat. Chem. 2018;10:1258–1266. doi: 10.1038/s41557-018-0149-x. PubMed DOI