• This record comes from PubMed

Homologues of epigenetic pyrimidines: 5-alkyl-, 5-hydroxyalkyl and 5-acyluracil and -cytosine nucleotides: synthesis, enzymatic incorporation into DNA and effect on transcription with bacterial RNA polymerase

. 2022 Aug 03 ; 3 (8) : 1069-1075. [epub] 20220630

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Homologues of natural epigenetic pyrimidine nucleosides and nucleotides were designed and synthesized. They included 5-ethyl-, 5-propyl-, 5-(1-hydroxyethyl)-, 5-(1-hydroxypropyl)- and 5-acetyl- and 5-propionylcytosine and -uracil 2'-deoxyribonucleosides and their corresponding 5'-O-triphosphates (dNXTPs). The epimers of 5-(1-hydroxyethyl)- and 5-(1-hydroxypropyl)pyrimidine nucleosides were separated and their absolute configuration was determined by a combination of X-ray and NMR analysis. The modified dNXTPs were used as substrates for PCR synthesis of modified DNA templates used for the study of transcription with bacterial RNA polymerase. Fundamental differences in transcription efficiency were observed, depending on the various modifications. The most notable effects included pronounced stimulation of transcription from 5-ethyluracil-bearing templates (200% transcription yield compared to natural thymine) and an enhancing effect of 5-acetylcytosine versus inhibiting effect of 5-acetyluracil. In summary, these results reveal that RNA polymerase copes with dramatically altered DNA structure and suggest that these nucleobases could potentially play roles as artificial epigenetic DNA nucleobases.

See more in PubMed

Chen K. Zhao B. S. He C. Cell Chem. Biol. 2016;23:74–85. doi: 10.1016/j.chembiol.2015.11.007. PubMed DOI PMC

Bilyard M. K. Becker S. Balasubramanian S. Curr. Opin. Chem. Biol. 2020;57:1–7. doi: 10.1016/j.cbpa.2020.01.014. PubMed DOI

Raiber E.-A. Hardisty R. van Delft P. Balasubramanian S. Nat. Rev. Chem. 2017;1:0069. doi: 10.1038/s41570-017-0069. DOI

Luo C. Hajkova P. Ecker J. R. Science. 2018;361:1336–1340. doi: 10.1126/science.aat6806. PubMed DOI PMC

Law J. A. Jacobsen S. E. Nat. Rev. Genet. 2010;11:204–220. doi: 10.1038/nrg2719. PubMed DOI PMC

Carell T. Kurz M. Q. Müller M. Rossa M. Spada F. Angew. Chem., Int. Ed. 2018;57:4296–4312. doi: 10.1002/anie.201708228. PubMed DOI

Münzel M. Globisch D. Carell T. Angew. Chem., Int. Ed. 2011;50:6460–6468. doi: 10.1002/anie.201101547. PubMed DOI

Globisch D. Münzel M. Müller M. Michalakis S. Wagner M. Koch S. Brückl T. Biel M. Carell T. PLoS One. 2010;5:e15367. doi: 10.1371/journal.pone.0015367. PubMed DOI PMC

Raiber E.-A. Murat P. Chirgadze D. Y. Beraldi D. Luisi B. F. Balasubramanian S. Nat. Struct. Mol. Biol. 2015;22:44–49. doi: 10.1038/nsmb.2936. PubMed DOI PMC

Wang L. Zhou Y. Xu L. Xiao R. Lu X. Chen L. Chong J. Li H. He C. Fu X.-D. Wang D. Nature. 2015;523:621–625. doi: 10.1038/nature14482. PubMed DOI PMC

Lu X. Zhao B. S. He C. Chem. Rev. 2015;115:2225–2239. doi: 10.1021/cr500470n. PubMed DOI PMC

He Y.-F. Li B.-Z. Li Z. Liu P. Wang Y. Tang Q. Ding J. Jia Y. Chen Z. Li L. Sun Y. Li X. Dai Q. Song C.-X. Zhang K. He C. Xu G.-L. Science. 2011;333:1303–1307. doi: 10.1126/science.1210944. PubMed DOI PMC

Hu L. Lu J. Cheng J. Rao Q. Li Z. Hou H. Lou Z. Zhang L. Li W. Gong W. Liu M. Sun C. Yin X. Li J. Tan X. Wang P. Wang Y. Fang D. Cui Q. Yang P. He C. Jiang H. Luo C. Xu Y. Nature. 2015;527:118–122. doi: 10.1038/nature15713. PubMed DOI

Schiesser S. Pfaffeneder T. Sadeghian K. Hackner B. Steigenberger B. Schröder A. S. Steinbacher J. Kashiwazaki G. Höfner G. Wanner K. T. Ochsenfeld C. Carell T. J. Am. Chem. Soc. 2013;135:14593–14599. doi: 10.1021/ja403229y. PubMed DOI

Schön A. Kaminska E. Schelter F. Ponkkonen E. Korytiaková E. Schiffers S. Carell T. Angew. Chem., Int. Ed. 2020;59:5591–5594. doi: 10.1002/anie.202000414. PubMed DOI PMC

Bachman M. Uribe-Lewis S. Yang X. Burgess H. E. Iurlaro M. Reik W. Murrell A. Balasubramanian S. Nat. Chem. Biol. 2015;11:555–557. doi: 10.1038/nchembio.1848. PubMed DOI PMC

Su M. Kirchner A. Stazzoni S. Müller M. Wagner M. Schröder A. Carell T. Angew. Chem., Int. Ed. 2016;55:11797–11800. doi: 10.1002/anie.201605994. PubMed DOI

Lercher L. McDonough M. A. El-Sagheer A. H. Thalhammer A. Kriaucionis S. Brown T. Schofield C. J. Chem. Commun. 2014;50:1794–1796. doi: 10.1039/C3CC48151D. PubMed DOI

Perera A. Eisen D. Wagner M. Laube S. K. Künzel A. F. Koch S. Steinbacher J. Schulze E. Splith V. Mittermeier N. Müller M. Biel M. Carell T. Michalakis S. Cell Rep. 2015;11:283–294. doi: 10.1016/j.celrep.2015.03.020. PubMed DOI

Kitsera N. Allgayer J. Parsa E. Geier N. Rossa M. Carell T. Khobta A. Nucleic Acids Res. 2017;45:11033–11042. doi: 10.1093/nar/gkx718. PubMed DOI PMC

Pfaffeneder T. Spada F. Wagner M. Brandmayr C. Laube S. K. Eisen D. Truss M. Steinbacher J. Hackner B. Kotljarova O. Schuermann D. Michalakis S. Kosmatchev O. Schiesser S. Steigenberger B. Raddaoui N. Kashiwazaki G. Müller U. Spruijt C. G. Vermeulen M. Leonhardt H. Schär P. Müller M. Carell T. Nat. Chem. Biol. 2014;10:574–581. doi: 10.1038/nchembio.1532. PubMed DOI

Djuric Z. Heilbrun L. K. Simon M. S. Smith D. Luongo D. A. LoRusso P. M. Martino S. Cancer. 1996;77:691–696. doi: 10.1002/(SICI)1097-0142(19960215)77:4<691::AID-CNCR15>3.0.CO;2-W. PubMed DOI

Kawasaki F. Beraldi D. Hardisty R. E. McInroy G. R. van Delft P. Balasubramanian S. Genome Biol. 2017;18:23. doi: 10.1186/s13059-017-1150-1. PubMed DOI PMC

Weigele P. Raleigh E. A. Chem. Rev. 2016;116:12655–12687. doi: 10.1021/acs.chemrev.6b00114. PubMed DOI

Hutinet G. Lee Y.-J. de Crécy-Lagard V. Weigele P. R. EcoSal Plus. 2021;9:eESP00282019. doi: 10.1128/ecosalplus.ESP-0028-2019. PubMed DOI PMC

Olinski R. Starczak M. Gackowski D. Mutat. Res. 2016;767:59–66. PubMed

Fujikawa K. Kamiya H. Kasai H. Nucleic Acids Res. 1998;26:4582–4587. doi: 10.1093/nar/26.20.4582. PubMed DOI PMC

Rogstad D. K. Heo J. Vaidehi N. Goddard W. A. Burdzy A. Sowers L. C. Biochemistry. 2004;43:5688–5697. doi: 10.1021/bi030247j. PubMed DOI

Raindlová V. Janoušková M. Slavíčková M. Perlíková P. Boháčová S. Milisavljevič N. Šanderová H. Benda M. Barvík I. Krásný L. Hocek M. Nucleic Acids Res. 2016;44:3000–3012. doi: 10.1093/nar/gkw171. PubMed DOI PMC

Janoušková M. Vaníková Z. Nici F. Boháčová S. Vítovská D. Šanderová H. Hocek M. Krásný L. Chem. Commun. 2017;53:13253–13255. doi: 10.1039/C7CC08053K. PubMed DOI

Vaníková Z. Janoušková M. Kambová M. Krásný L. Hocek M. Chem. Sci. 2019;10:3937–3942. doi: 10.1039/C9SC00205G. PubMed DOI PMC

Chakrapani A. Vaňková Hausnerová V. Ruiz-Larrabeiti O. Pohl R. Krásný L. Hocek M. Org. Lett. 2020;22:9081–9085. doi: 10.1021/acs.orglett.0c03462. PubMed DOI

Lee Y.-J. Dai N. Müller S. I. Guan C. Parker M. J. Fraser M. E. Walsh S. E. Sridar J. Mulholland A. Nayak K. Sun Z. Lin Y.-C. Comb D. G. Marks K. Gonzalez R. Dowling D. P. Bandarian V. Saleh L. Corrêa I. R. Weigele P. R. Nucleic Acids Res. 2022;50:3001–3017. doi: 10.1093/nar/gkab781. PubMed DOI PMC

Kornberg S. R. Zimmerman S. B. Kornberg A. J. Biol. Chem. 1961;236:1487–1493. doi: 10.1016/S0021-9258(18)64202-4. PubMed DOI

Tomaschewski J. Gram H. Crabb J. W. Rüger W. Nucleic Acids Res. 1985;13:7551–7568. doi: 10.1093/nar/13.21.7551. PubMed DOI PMC

Chakrapani A. Ruiz-Larrabeiti O. Pohl R. Svoboda M. Krásný L. Hocek M. Chem. – Eur. J. 2022;28:e202200911. doi: 10.1002/chem.202200911. PubMed DOI

Kavoosi S. Sudhamalla B. Dey D. Shriver K. Arora S. Sappa S. Islam K. Chem. Sci. 2019;10:10550–10555. doi: 10.1039/C9SC02629K. PubMed DOI PMC

Steigenberger B. Schiesser S. Hackner B. Brandmayr C. Laube S. K. Steinbacher J. Pfaffeneder T. Carell T. Org. Lett. 2013;15:366–369. doi: 10.1021/ol3033219. PubMed DOI

Macíčková-Cahová H. Pohl R. Hocek M. ChemBioChem. 2011;12:431–438. doi: 10.1002/cbic.201000644. PubMed DOI

Mačková M. Pohl R. Hocek M. ChemBioChem. 2014;15:2306–2312. doi: 10.1002/cbic.201402319. PubMed DOI

Kulikowski T. Shugar D. J. Med. Chem. 1974;17:269–273. doi: 10.1021/jm00249a003. PubMed DOI

Jones A. S. Slater M. J. Walker R. T. J. Chem. Soc., Perkin Trans. 1. 1987:1325–1329. doi: 10.1039/P19870001325. DOI

Chentsova A. Kapourani E. Giannis A. Beilstein J. Org. Chem. 2014;10:7–11. doi: 10.3762/bjoc.10.2. PubMed DOI PMC

Robins M. J. Barr P. J. J. Org. Chem. 1983;48:1854–1862. doi: 10.1021/jo00159a012. DOI

Ingale S. A. Mei H. Leonard P. Seela F. J. Org. Chem. 2013;78:11271–11282. doi: 10.1021/jo401780u. PubMed DOI

Luche J.-L. Rodriguez-Hahn L. Crabbé P. J. Chem. Soc., Chem. Commun. 1978:601–602. doi: 10.1039/C39780000601. DOI

Zheng X.-A. Huang H.-S. Kong R. Chen W.-J. Gong S.-S. Sun Q. Tetrahedron. 2018;74:7095–7101. doi: 10.1016/j.tet.2018.10.046. DOI

Froehler B. C. Wadwani S. Terhorst T. J. Gerrard S. R. Tetrahedron Lett. 1992;33:5307–5310. doi: 10.1016/S0040-4039(00)79079-4. DOI

Ruth J. L. Bergstrom D. E. J. Org. Chem. 1978;43:2870–2876. doi: 10.1021/jo00408a026. DOI

Crouch G. J. Eaton B. E. Nucleosides Nucleotides. 1994;13:939–944. doi: 10.1080/15257779408011867. DOI

Ludwig J. Acta Biochim. Biophys. Hung. 1981;16:131–133. PubMed

Sojka L. Kouba T. Barvík I. Šanderová H. Maderová Z. Jonák J. Krásný L. Nucleic Acids Res. 2011;39:4598–4611. doi: 10.1093/nar/gkr032. PubMed DOI PMC

Raiber E.-A. Portella G. Martínez Cuesta S. Hardisty R. Murat P. Li Z. Iurlaro M. Dean W. Spindel J. Beraldi D. Liu Z. Dawson M. A. Reik W. Balasubramanian S. Nat. Chem. 2018;10:1258–1266. doi: 10.1038/s41557-018-0149-x. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...