Nucleotide composition shapes gene expression in Wolbachia pipientis: a role for MidA methyltransferase?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40815476
PubMed Central
PMC12455994
DOI
10.1128/msystems.00779-25
Knihovny.cz E-zdroje
- Klíčová slova
- MidA, Wolbachia pipientis, endosymbionts, gene expression, regulation of gene expression,
- MeSH
- bakteriální proteiny * genetika metabolismus MeSH
- methyltransferasy * genetika metabolismus MeSH
- metylace DNA MeSH
- nukleotidy * genetika MeSH
- regulace genové exprese u bakterií * MeSH
- Wolbachia * genetika enzymologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- methyltransferasy * MeSH
- nukleotidy * MeSH
UNLABELLED: Wolbachia pipientis is an obligate intracellular bacterium, associated with several arthropods and filarial nematodes. Wolbachia establishes a variety of symbiotic relationships with its hosts, with consequent genomic rearrangements, variation in gene content, and loss of regulatory regions. Despite this, experimental studies show that Wolbachia gene expression is coordinated with host developmental stages, but the mechanism is still unknown. In this work, we analyzed published RNA-seq data of four Wolbachia strains, finding a correlation between gene nucleotide composition and gene expression. The strength and direction of this phenomenon changed with the expression of the S-adenosyl-methionine-dependent methyltransferase midA. Specifically, when midA is overexpressed, there is a negative relationship between gene adenine content and gene expression, while downregulation of midA reverses this trend. MidA is known to methylate protein arginine, with potential effect on protein affinity for substrates, including nucleic acids. To expand our understanding of this poorly characterized enzyme, we investigated its ability to methylate DNA expressing it in Escherichia coli. The experiment revealed that the Wolbachia MidA can methylate both adenine and cytosine. Lastly, we found upstream the midA gene, a conserved binding site for the Ccka/CtrA signaling transduction system, and we hypothesize that this mechanism could be involved in the communication between the host and the bacterium. Overall, these findings suggest a cascade mechanism in which the host activates the bacterium Ccka/CtrA signaling system, thus inducing the expression of the midA gene, with subsequent effect on the expression of several Wolbachia genes on the basis of their nucleotide composition. IMPORTANCE: Wolbachia pipientis is one of the most common intracellular bacteria in insects, and it is currently utilized as a tool for the control of vector-borne diseases. As for many other endosymbiont bacteria, Wolbachia experienced important genome rearrangements, gene content changes, and the loss of several regulatory sequences, affecting the integrity of operons and promoters. Nevertheless, experimental studies have shown that Wolbachia gene expression is coordinated with the host physiology (e.g., developmental stages), although the underlying mechanism remains unclear. In this work, based on in silico analyses and an experimental study on wOo methyltransferase, we propose that bacterial DNA methylation could be a key mechanism regulating Wolbachia gene expression. Additionally, we found evidence suggesting that the DNA methylation process in Wolbachia can be activated by the host.
Zobrazit více v PubMed
Zug R, Hammerstein P. 2012. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544. doi: 10.1371/journal.pone.0038544 PubMed DOI PMC
Porter J, Sullivan W. 2023. The cellular lives of Wolbachia. Nat Rev Microbiol 21:750–766. doi: 10.1038/s41579-023-00918-x PubMed DOI
Werren JH. 1997. Biology of Wolbachia. Annu Rev Entomol 42:587–609. doi: 10.1146/annurev.ento.42.1.587 PubMed DOI
Bandi C, Anderson TJ, Genchi C, Blaxter ML. 1998. Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265:2407–2413. doi: 10.1098/rspb.1998.0591 PubMed DOI PMC
Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. doi: 10.1038/nrmicro1969 PubMed DOI
Hoffmann AA, Cooper BS. 2024. Describing endosymbiont-host interactions within the parasitism-mutualism continuum. Ecol Evol 14:e11705. doi: 10.1002/ece3.11705 PubMed DOI PMC
Hedges LM, Brownlie JC, O’Neill SL, Johnson KN. 2008. Wolbachia and virus protection in insects. Science 322:702. doi: 10.1126/science.1162418 PubMed DOI
Teixeira L, Ferreira Á, Ashburner M. 2008. The bacterial symbiont Wolbachia induces resistance to RNA Viral Infections in Drosophila melanogaster. PLoS Biol 6:e1000002. doi: 10.1371/journal.pbio.1000002 PubMed DOI PMC
Newton ILG, Rice DW. 2020. The jekyll and hyde symbiont: could be a nutritional mutualist. J Bacteriol 202. doi: 10.1128/JB.00589-19 PubMed DOI PMC
Bandi C, McCall JW, Genchi C, Corona S, Venco L, Sacchi L. 1999. Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int J Parasitol 29:357–364. doi: 10.1016/s0020-7519(98)00200-8 PubMed DOI
Scholz M, Albanese D, Tuohy K, Donati C, Segata N, Rota-Stabelli O. 2020. Large scale genome reconstructions illuminate Wolbachia evolution. Nat Commun 11:5235. doi: 10.1038/s41467-020-19016-0 PubMed DOI PMC
Tolley SJA, Nonacs P, Sapountzis P. 2019. Wolbachia horizontal transmission events in ants: what do we know and what can we learn? Front Microbiol 10:296. doi: 10.3389/fmicb.2019.00296 PubMed DOI PMC
Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, Dempsey DM, Dickerman A, Dietrich EM, Kenyon RW, et al. 2023. Introducing the bacterial and viral bioinformatics resource center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res 51:D678–D689. doi: 10.1093/nar/gkac1003 PubMed DOI PMC
Manzano-Marín A, Latorre A. 2016. Snapshots of a shrinking partner: genome reduction in serratia symbiotica. Sci Rep 6:32590. doi: 10.1038/srep32590 PubMed DOI PMC
Comandatore F, Cordaux R, Bandi C, Blaxter M, Darby A, Makepeace BL, Montagna M, Sassera D. 2015. Supergroup C Wolbachia, mutualist symbionts of filarial nematodes, have a distinct genome structure. Open Biol 5:150099. doi: 10.1098/rsob.150099 PubMed DOI PMC
Mahmood S, Nováková E, Martinů J, Sychra O, Hypša V. 2023. Supergroup F Wolbachia with extremely reduced genome: transition to obligate insect symbionts. Microbiome 11:22. doi: 10.1186/s40168-023-01462-9 PubMed DOI PMC
Wilcox JL, Dunbar HE, Wolfinger RD, Moran NA. 2003. Consequences of reductive evolution for gene expression in an obligate endosymbiont. Mol Microbiol 48:1491–1500. doi: 10.1046/j.1365-2958.2003.03522.x PubMed DOI
Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Koldkjær P, Rainbow L, Radford AD, Blaxter ML, Tanya VN, Trees AJ, Cordaux R, Wastling JM, Makepeace BL. 2012. Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 22:2467–2477. doi: 10.1101/gr.138420.112 PubMed DOI PMC
Luck AN, Evans CC, Riggs MD, Foster JM, Moorhead AR, Slatko BE, Michalski ML. 2014. Concurrent transcriptional profiling of Dirofilaria immitis and its Wolbachia endosymbiont throughout the nematode life cycle reveals coordinated gene expression. BMC Genomics 15:1041. doi: 10.1186/1471-2164-15-1041 PubMed DOI PMC
Darby AC, Gill AC, Armstrong SD, Hartley CS, Xia D, Wastling JM, Makepeace BL. 2014. Integrated transcriptomic and proteomic analysis of the global response of Wolbachia to doxycycline-induced stress. ISME J 8:925–937. doi: 10.1038/ismej.2013.192 PubMed DOI PMC
Luck AN, Anderson KG, McClung CM, VerBerkmoes NC, Foster JM, Michalski ML, Slatko BE. 2015. Tissue-specific transcriptomics and proteomics of a filarial nematode and its Wolbachia endosymbiont. BMC Genomics 16:920. doi: 10.1186/s12864-015-2083-2 PubMed DOI PMC
Gutzwiller F, Carmo CR, Miller DE, Rice DW, Newton ILG, Hawley RS, Teixeira L, Bergman CM. 2015. Dynamics of Wolbachia pipientis gene expression across the Drosophila melanogaster life cycle. G3 (Bethesda) 5:2843–2856. doi: 10.1534/g3.115.021931 PubMed DOI PMC
Grote A, Voronin D, Ding T, Twaddle A, Unnasch TR, Lustigman S, Ghedin E. 2017. Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq. PLoS Negl Trop Dis 11:e0005357. doi: 10.1371/journal.pntd.0005357 PubMed DOI PMC
Chung M, Teigen LE, Libro S, Bromley RE, Olley D, Kumar N, Sadzewicz L, Tallon LJ, Mahurkar A, Foster JM, Michalski ML, Dunning Hotopp JC. 2019. Drug repurposing of bromodomain inhibitors as potential novel therapeutic leads for lymphatic filariasis guided by multispecies transcriptomics. mSystems 4:e00596-19. doi: 10.1128/mSystems.00596-19 PubMed DOI PMC
Smith TE, Moran NA. 2020. Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera . Proc Natl Acad Sci USA 117:2113–2121. doi: 10.1073/pnas.1916748117 PubMed DOI PMC
Christensen S, Serbus LR. 2015. Comparative analysis of Wolbachia genomes reveals streamlining and divergence of minimalist two-component systems G3:983–996. doi: 10.1534/g3.115.017137 PubMed DOI PMC
Narayanan S, Kumar L, Radhakrishnan SK. 2018. Sensory domain of the cell cycle kinase CckA regulates the differential DNA binding of the master regulator CtrA in Caulobacter crescentus. Biochim Biophys Acta Gene Regul Mech 1861:952–961. doi: 10.1016/j.bbagrm.2018.08.006 PubMed DOI PMC
Lindsey ARI. 2020. Sensing, signaling, and secretion: a review and analysis of systems for regulating host interaction in Wolbachia Genes (Basel) 11:813. doi: 10.3390/genes11070813 PubMed DOI PMC
Shahul Hameed UF, Sanislav O, Lay ST, Annesley SJ, Jobichen C, Fisher PR, Swaminathan K, Arold ST. 2018. Proteobacterial origin of protein arginine methylation and regulation of complex I assembly by MidA. Cell Rep 24:1996–2004. doi: 10.1016/j.celrep.2018.07.075 PubMed DOI
Hameedi MA, Grba DN, Richardson KH, Jones AJY, Song W, Roessler MM, Wright JJ, Hirst J. 2021. A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I. J Biol Chem 296:100474. doi: 10.1016/j.jbc.2021.100474 PubMed DOI PMC
Carilla-Latorre S, Gallardo ME, Annesley SJ, Calvo-Garrido J, Graña O, Accari SL, Smith PK, Valencia A, Garesse R, Fisher PR, Escalante R. 2010. MidA is a putative methyltransferase that is required for mitochondrial complex I function. J Cell Sci 123:1674–1683. doi: 10.1242/jcs.066076 PubMed DOI
Lassak J, Koller F, Krafczyk R, Volkwein W. 2019. Exceptionally versatile - arginine in bacterial post-translational protein modifications. Biol Chem 400:1397–1427. doi: 10.1515/hsz-2019-0182 PubMed DOI
Chung M, Basting PJ, Patkus RS, Grote A, Luck AN, Ghedin E, Slatko BE, Michalski M, Foster JM, Bergman CM, Hotopp JCD. 2020. A meta-analysis of transcriptomics reveals a stage-specific transcriptional response shared across different hosts G3:3243–3260. doi: 10.1534/g3.120.401534 PubMed DOI PMC
Gao Q, Lu S, Wang Y, He L, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A. 2023. Bacterial DNA methyltransferase: a key to the epigenetic world with lessons learned from proteobacteria. Front Microbiol 14:1129437. doi: 10.3389/fmicb.2023.1129437 PubMed DOI PMC
Papaleo S, Alvaro A, Nodari R, Panelli S, Bitar I, Comandatore F. 2022. The red thread between methylation and mutation in bacterial antibiotic resistance: how third-generation sequencing can help to unravel this relationship. Front Microbiol 13:957901. doi: 10.3389/fmicb.2022.957901 PubMed DOI PMC
Rountree MR, Selker EU. 1997. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev 11:2383–2395. doi: 10.1101/gad.11.18.2383 PubMed DOI PMC
Gracias F, Ruiz-Larrabeiti O, Vaňková Hausnerová V, Pohl R, Klepetářová B, Sýkorová V, Krásný L, Hocek M. 2022. Homologues of epigenetic pyrimidines: 5-alkyl-, 5-hydroxyalkyl and 5-acyluracil and -cytosine nucleotides: synthesis, enzymatic incorporation into DNA and effect on transcription with bacterial RNA polymerase. RSC Chem Biol 3:1069–1075. doi: 10.1039/d2cb00133k PubMed DOI PMC
Rausch C, Zhang P, Casas-Delucchi CS, Daiß JL, Engel C, Coster G, Hastert FD, Weber P, Cardoso MC. 2021. Cytosine base modifications regulate DNA duplex stability and metabolism. Nucleic Acids Res 49:12870–12894. doi: 10.1093/nar/gkab509 PubMed DOI PMC
Janoušková M, Vaníková Z, Nici F, Boháčová S, Vítovská D, Šanderová H, Hocek M, Krásný L. 2017. 5-(Hydroxymethyl)uracil and -cytosine as potential epigenetic marks enhancing or inhibiting transcription with bacterial RNA polymerase. Chem Commun 53:13253–13255. doi: 10.1039/C7CC08053K PubMed DOI
Basehoar AD, Zanton SJ, Pugh BF. 2004. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116:699–709. doi: 10.1016/s0092-8674(04)00205-3 PubMed DOI
Bae S-H, Han HW, Moon J. 2015. Functional analysis of the molecular interactions of TATA box-containing genes and essential genes. PLoS One 10:e0120848. doi: 10.1371/journal.pone.0120848 PubMed DOI PMC
Comandatore F, Sassera D, Montagna M, Kumar S, Koutsovoulos G, Thomas G, Repton C, Babayan SA, Gray N, Cordaux R, Darby A, Makepeace B, Blaxter M. 2013. Phylogenomics and analysis of shared genes suggest a single transition to mutualism in Wolbachia of nematodes. Genome Biol Evol 5:1668–1674. doi: 10.1093/gbe/evt125 PubMed DOI PMC
Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119 PubMed DOI PMC
Peden JF. 1999. Analysis of codon usage PhD Thesis, University of Nottingham, UK
Jensen TØ, Tellgren-Roth C, Redl S, Maury J, Jacobsen SAB, Pedersen LE, Nielsen AT. 2019. Genome-wide systematic identification of methyltransferase recognition and modification patterns. Nat Commun 10:3311. doi: 10.1038/s41467-019-11179-9 PubMed DOI PMC
Hiraoka S, Okazaki Y, Anda M, Toyoda A, Nakano S, Iwasaki W. 2019. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat Commun 10:1–10. doi: 10.1038/s41467-018-08103-y PubMed DOI PMC
Ouimet MC, Marczynski GT. 2000. Analysis of a cell-cycle promoter bound by a response regulator. J Mol Biol 302:761–775. doi: 10.1006/jmbi.2000.4500 PubMed DOI
Pribnow D. 1975. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci USA 72:784–788. doi: 10.1073/pnas.72.3.784 PubMed DOI PMC
Bucher P. 1990. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 212:563–578. doi: 10.1016/0022-2836(90)90223-9 PubMed DOI
Gómez-Rubio V. 2017. Ggplot2 - elegant graphics for data analysis (2nd edition). J Stat Softw 77. doi: 10.18637/jss.v077.b02 DOI
Stothard P. 2000. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102, 1104. doi: 10.2144/00286ir01 PubMed DOI
Hwang S, Gou Z, Kuznetsov IB. 2007. DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics 23:634–636. doi: 10.1093/bioinformatics/btl672 PubMed DOI
Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20:238. doi: 10.1186/s13059-019-1832-y PubMed DOI PMC
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 PubMed DOI PMC
Bruen TC, Philippe H, Bryant D. 2006. A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665–2681. doi: 10.1534/genetics.105.048975 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC
Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 37:291–294. doi: 10.1093/molbev/msz189 PubMed DOI PMC
Penny D, Foulds LR, Hendy MD. 1982. Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences. Nature 297:197–200. doi: 10.1038/297197a0 PubMed DOI
Paradis E, Schliep K. 2018. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528. doi: 10.1093/bioinformatics/bty633 PubMed DOI
Revell LJ. 2024. Phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12:e16505. doi: 10.7717/peerj.16505 PubMed DOI PMC
Morel B, Kozlov AM, Stamatakis A, Szöllősi GJ. 2020. GeneRax: a tool for species-tree-aware maximum likelihood-based gene family tree inference under gene duplication, transfer, and loss. Mol Biol Evol 37:2763–2774. doi: 10.1093/molbev/msaa141 PubMed DOI PMC