BACKGROUND: Polymorphisms in thiopurine methyltransferase (TPMT) are a predominant cause of azathioprine-induced leucopenia in Western countries. The exact role of these polymorphisms in the Indian population with dermatological disorders is uncertain. OBJECTIVES: To evaluate the frequency of genetic polymorphism of TPMT and its impact on the safety of azathioprine in dermatological disorders. METHODS: We included consecutive patients on azathioprine who were initiated for dermatological disorders from South India. Three TPMT polymorphisms (c.238G>C, c.460G>A and c.719A>G) were assessed. The proportions of adverse events to azathioprine, especially myelosuppression, were compared between those with the wildtype genotype and those with TPMT polymorphisms. RESULTS: Of the 123 patients (61 male and 62 female, mean age 46 years), 65% had an autoimmune blistering disorder. Adverse events to azathioprine were noted in 25 (20.3%), of whom 16 (13.0%) had myelosuppression and 4 (3.2%) each had hepatotoxicity and gastrointestinal intolerance. TPMT polymorphisms were detected in 13 (10.6%), of whom 5 had experienced adverse events. The polymorphisms could explain 25% (4 of 16) of the cases of leucopenia. The odds of developing leucopenia in patients with TPMT polymorphism were not significant (odds ratio 3.63, 95% confidence interval 0.96-13.6; P = 0.06). CONCLUSIONS: The tested TPMT polymorphisms could not predict the adverse events of azathioprine, particularly the haematological toxicity, in dermatological use among the South Indian population.
- MeSH
- azathioprin * škodlivé účinky terapeutické užití MeSH
- dospělí MeSH
- genotyp MeSH
- imunosupresiva * škodlivé účinky terapeutické užití MeSH
- klinická relevance MeSH
- kožní nemoci * farmakoterapie genetika MeSH
- leukopenie chemicky indukované genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- methyltransferasy * genetika MeSH
- mladiství MeSH
- mladý dospělý MeSH
- polymorfismus genetický MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Indie MeSH
OBJECTIVES: To analyse characteristics of Clostridioides difficile PCR ribotype 176 clinical isolates from Poland, the Czech Republic and Slovakia with regard to the differences in its epidemiology. METHODS: Antimicrobial susceptibility testing and whole genome sequencing were performed on a selected group of 22 clonally related isolates as determined by multilocus variable-number tandem repeat analysis (n = 509). Heterologous expression and functional analysis of the newly identified methyltransferase were performed. RESULTS: Core genome multilocus sequence typing found 10-37 allele differences. All isolates were resistant to fluoroquinolones (gyrA_p. T82I), aminoglycosides with aac(6')-Ie-aph(2'')-Ia in six isolates. Erythromycin resistance was detected in 21/22 isolates and 15 were also resistant to clindamycin with ermB gene. Fourteen isolates were resistant to rifampicin with rpoB_p. R505K or p. R505K/H502N, and five to imipenem with pbp1_p. P491L and pbp3_p. N537K. PnimBG together with nimB_p. L155I were detected in all isolates but only five were resistant to metronidazole on chocolate agar. The cfrE, vanZ1 and cat-like genes were not associated with linezolid, teicoplanin and chloramphenicol resistance, respectively. The genome comparison identified six transposons carrying antimicrobial resistance genes. The ermB gene was carried by new Tn7808, Tn6189 and Tn6218-like. The aac(6')-Ie-aph(2'')-Ia were carried by Tn6218-like and new Tn7806 together with cfrE gene. New Tn7807 carried a cat-like gene. Tn6110 and new Tn7806 contained an RlmN-type 23S rRNA methyltransferase, designated MrmA, associated with high-level macrolide resistance in isolates without ermB gene. CONCLUSIONS: Multidrug-resistant C. difficile PCR ribotype 176 isolates carry already described and unique transposons. A novel mechanism for erythromycin resistance in C. difficile was identified.
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální léková rezistence * MeSH
- bakteriální proteiny genetika MeSH
- Clostridioides difficile * genetika účinky léků izolace a purifikace klasifikace MeSH
- genomové ostrovy * MeSH
- klostridiové infekce * mikrobiologie epidemiologie MeSH
- lidé MeSH
- methyltransferasy genetika MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence * genetika MeSH
- multilokusová sekvenční typizace MeSH
- ribotypizace MeSH
- sekvenování celého genomu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Polsko MeSH
INTRODUCTION: Variable expressivity is an emerging characteristic of KMT2B-related dystonia. However, it remains poorly understood whether variants reoccurring at specific sites of lysine-specific methlytransferase-2B (KMT2B) can drive intra- and interfamilial clinical heterogeneity. Our goal was to ascertain independent families with variants affecting residue Arg2565 of KMT2B. METHODS: Whole-exome/genome sequencing, multi-site recruitment, genotype-phenotype correlations, and DNA methylation episignature analysis were performed. RESULTS: We report four individuals from two families harboring the variant c.7693C > G, p.Arg2565Gly. In an additional patient, a de-novo c.7693C > T, p.Arg2565Cys variant was identified. The observed phenotypic spectrum ranged from childhood-onset dystonia (N = 2) over unspecific intellectual disability syndromes (N = 2) to undiagnosed behavioral symptoms in adulthood (N = 1). Samples bearing p.Arg2565Gly had a KMT2B-typical episignature, although the effect on methylation was less pronounced than in carriers of loss-of-function KMT2B variants. CONCLUSIONS: We established the existence of a KMT2B missense-mutation hotspot associated with varying degrees of disease severity and expression, providing information for patient counseling and elucidation of pathomechanisms.
- MeSH
- dítě MeSH
- dospělí MeSH
- dystonické poruchy * genetika MeSH
- dystonie genetika MeSH
- histonlysin-N-methyltransferasa * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- missense mutace MeSH
- mladiství MeSH
- mladý dospělý MeSH
- rodokmen * MeSH
- sekvenování exomu MeSH
- vývojové poruchy u dětí genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
BACKGROUND: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment. However, suitable methods for detecting the methylation of the MGMT gene promoter and setting appropriate cutoff values are debated. RESULTS: A cohort of 108 patients with histologically and genetically defined glioblastoma was retrospectively examined with methylation-specific Sanger sequencing (sSeq) and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) methods. The DMR2 region was methylated in 29% of samples, whereas DMR1 was methylated in 12% of samples. Methylation detected with the MS-MLPA method using probes MGMT_215, MGMT_190, and MGMT_124 from the ME012-A1 kit (located in DMR1 and DMR2) correlated with the methylation of the corresponding CpG dinucleotides detected with sSeq (p = 0.005 for probe MGMT_215; p < 0.001 for probe MGMT_190; p = 0.016 for probe MGMT_124). The threshold for methylation detection with the MS-MLPA method was calculated with a ROC curve analysis and principal components analysis of the data obtained with the MS-MLPA and sSeq methods, yielding a weighted value of 0.362. Thus, methylation of the MGMT gene promoter was confirmed in 36% of samples. These patients had statistically significantly better overall survival (p = 0.003). CONCLUSIONS: Our results show that the threshold for methylation detection with the MS-MLPA method determined here is useful from a diagnostic perspective because it allows the stratification of patients who will benefit from specific treatment protocols, including temozolomide. Detailed analysis of the MGMT gene promoter enables the more-precise and personalized treatment of patients with glioblastoma.
- MeSH
- CpG ostrůvky genetika MeSH
- DNA modifikační methylasy * genetika MeSH
- dospělí MeSH
- enzymy opravy DNA * genetika MeSH
- glioblastom * genetika farmakoterapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA * genetika MeSH
- nádorové supresorové proteiny * genetika MeSH
- nádory mozku * genetika MeSH
- promotorové oblasti (genetika) * genetika MeSH
- retrospektivní studie MeSH
- sekvenční analýza DNA metody MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- temozolomid terapeutické užití MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- validační studie MeSH
The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear. We find that hTSCs exhibit an atypical methylome compared with trophectoderm and 1st trimester cytotrophoblast. Regardless of cell origin, oxygen levels, or culture conditions, hTSCs show localized DNA methylation within transcribed gene bodies and a complete loss of PMDs. Unlike early human trophoblasts, hTSCs display a notable absence of DNMT3L expression, which is necessary for PMD establishment in mouse trophoblasts. Remarkably, we demonstrate that ectopic expression of DNMT3L in hTSCs restores placental PMDs, supporting a conserved role for DNMT3L in de novo methylation in trophoblast development in human embryogenesis.
- MeSH
- DNA-(cytosin-5-)methyltransferasa * metabolismus genetika MeSH
- epigenom MeSH
- kmenové buňky metabolismus cytologie MeSH
- lidé MeSH
- metylace DNA * genetika MeSH
- myši MeSH
- placenta * metabolismus cytologie MeSH
- těhotenství MeSH
- trofoblasty * metabolismus cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nonalcoholic fatty liver disease (NAFLD) is characterized by elevated hepatic lipids caused by nonalcoholic factors, where histone lactylation is lately discovered as a modification driving disease progression. This research aimed to explore the role of histone 3 lysine 18 lactylation (H3K18lac) in NAFLD progression using a high-fat diet (HFD)-treated mouse model and free fatty acids (FFA)-treated L-02 cell lines. Lipids accumulation was screened via Oil Red O staining, real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, and commercially available kits. Similarly, molecular mechanism was analyzed using immunoprecipitation (IP), dual-luciferase reporter assay, and RNA decay assay. Results indicated that FFA upregulated lactate dehydrogenase A (LDHA) and H3K18lac levels in L-02 cells. Besides, LDHA-mediated H3K18lac was enriched on the proximal promoter of methyltransferase 3 (METTL3), translating into an increased expression. Moreover, METTL3 or LDHA knockdown relieved lipid accumulation, decreased total cholesterol (TC) and triglyceride (TG) levels, and downregulated lipogenesis-related proteins in FFA-treated L-02 cell lines, in addition to enhancing the m6A and mRNA levels of stearoyl-coenzyme A desaturase 1 (SCD1). The m6A modification of SCD1 was recognized by YTH N6-methyladenosine RNA binding protein F1 (YTHDF1), resulting in enhanced mRNA stability. LDHA was found to be highly expressed in HFD-treated mice, where knocking down LDHA attenuated HFD-induced hepatic steatosis. These findings demonstrated that LDHA-induced H3K18lac promoted NAFLD progression, where LDHA-induced H3K18lac in METTL3 promoter elevated METTL3 expression, thereby promoting m6A methylation and stabilizing SCD1 via a YTHDF1-dependent manner. Keywords: Nonalcoholic fatty liver disease, LDHA, METTL3, YTHDF1, Histone lactylation.
- MeSH
- adenosin * metabolismus analogy a deriváty MeSH
- dieta s vysokým obsahem tuků škodlivé účinky MeSH
- histony * metabolismus MeSH
- L-laktátdehydrogenasa metabolismus MeSH
- lidé MeSH
- methyltransferasy * metabolismus genetika MeSH
- myši inbrední C57BL * MeSH
- myši MeSH
- nealkoholová steatóza jater * metabolismus patologie MeSH
- progrese nemoci * MeSH
- proteiny vázající RNA * metabolismus genetika MeSH
- stearyl-CoA-desaturasa * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Biological mechanisms related to cancer development can leave distinct molecular fingerprints in tumours. By leveraging multi-omics and epidemiological information, we can unveil relationships between carcinogenesis processes that would otherwise remain hidden. Our integrative analysis of DNA methylome, transcriptome, and somatic mutation profiles of kidney tumours linked ageing, epithelial-mesenchymal transition (EMT), and xenobiotic metabolism to kidney carcinogenesis. Ageing process was represented by associations with cellular mitotic clocks such as epiTOC2, SBS1, telomere length, and PBRM1 and SETD2 mutations, which ticked faster as tumours progressed. We identified a relationship between BAP1 driver mutations and the epigenetic upregulation of EMT genes (IL20RB and WT1), correlating with increased tumour immune infiltration, advanced stage, and poorer patient survival. We also observed an interaction between epigenetic silencing of the xenobiotic metabolism gene GSTP1 and tobacco use, suggesting a link to genotoxic effects and impaired xenobiotic metabolism. Our pan-cancer analysis showed these relationships in other tumour types. Our study enhances the understanding of kidney carcinogenesis and its relation to risk factors and progression, with implications for other tumour types.
- MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- epigeneze genetická MeSH
- epitelo-mezenchymální tranzice * genetika MeSH
- glutathion-S-transferasa fí genetika metabolismus MeSH
- histonlysin-N-methyltransferasa genetika metabolismus MeSH
- karcinogeneze * genetika MeSH
- lidé MeSH
- metylace DNA * MeSH
- multiomika MeSH
- mutace * MeSH
- nádorové supresorové proteiny genetika metabolismus MeSH
- nádory ledvin * genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- stárnutí genetika MeSH
- thiolesterasa ubikvitinu MeSH
- transkripční faktory genetika metabolismus MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Ovarian cancer (OC) is mostly diagnosed in advanced stages with high incidence-to-mortality rate. Nevertheless, some patients achieve long-term disease-free survival. However, the prognostic markers have not been well established. OBJECTIVE: The primary objective of this study was to analyse the association of the suggested prognostic marker rs2185379 in PRDM1 with long-term survival in a large independent cohort of advanced OC patients. METHODS: We genotyped 545 well-characterized advanced OC patients. All patients were tested for OC predisposition. The effect of PRDM1 rs2185379 and other monitored clinicopathological and genetic variables on survival were analysed. RESULTS: The univariate analysis revealed no significant effect of PRDM1 rs2185379 on survival whereas significantly worse prognosis was observed in postmenopausal patients (HR = 2.49; 95%CI 1.90-3.26; p= 4.14 × 10 - 11) with mortality linearly increasing with age (HR = 1.05 per year; 95%CI 1.04-1.07; p= 2 × 10 - 6), in patients diagnosed with non-high-grade serous OC (HR = 0.44; 95%CI 0.32-0.60; p= 1.95 × 10 - 7) and in patients carrying a gBRCA1 pathogenic variant (HR = 0.65; 95%CI 0.48-0.87; p= 4.53 × 10 - 3). The multivariate analysis interrogating the effect of PRDM1 rs2185379 with other significant prognostic factors revealed marginal association of PRDM1 rs2185379 with worse survival in postmenopausal women (HR = 1.54; 95%CI 1.01-2.38; p= 0.046). CONCLUSIONS: Unlike age at diagnosis, OC histology or gBRCA1 status, rs2185379 in PRDM1 is unlikely a marker of long-term survival in patients with advance OC.
- MeSH
- dospělí MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery * genetika MeSH
- nádory vaječníků * genetika mortalita patologie MeSH
- prognóza MeSH
- protein BRCA1 * genetika MeSH
- protein PRDI-BF1 * genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- staging nádorů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard the integrity of the chromatin fiber. The chromodomain protein MSL3 binds H3K36me3 to target X-chromosomal genes in male Drosophila for dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Unexpectedly, depletion of K36me3 had variable, locus-specific effects on the interactions of those readers. This observation motivated a systematic and comprehensive study of K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2 and K36me3 each contribute to distinct chromatin states. A gene-centric view of the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD and Ash1 revealed local, context-specific methylation signatures. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at regions with enhancer signatures. The genome-wide mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.
- MeSH
- chromatin * metabolismus MeSH
- DNA vazebné proteiny metabolismus genetika MeSH
- Drosophila melanogaster genetika metabolismus MeSH
- heterochromatin metabolismus genetika MeSH
- histonlysin-N-methyltransferasa * metabolismus genetika MeSH
- histony * metabolismus MeSH
- lysin metabolismus MeSH
- methyltransferasy metabolismus genetika MeSH
- metylace MeSH
- protein-serin-threoninkinasy MeSH
- proteiny Drosophily * metabolismus genetika MeSH
- transkripční faktory metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A comprehensive international consensus on the cytogenetic risk-group stratification of KMT2A-rearranged (KMT2A-r) pediatric acute myeloid leukemia (AML) is lacking. This retrospective (2005-2016) International Berlin-Frankfurt-Münster Study Group study on 1256 children with KMT2A-r AML aims to validate the prognostic value of established recurring KMT2A fusions and additional cytogenetic aberrations (ACAs) and to define additional, recurring KMT2A fusions and ACAs, evaluating their prognostic relevance. Compared with our previous study, 3 additional, recurring KMT2A-r groups were defined: Xq24/KMT2A::SEPT6, 1p32/KMT2A::EPS15, and 17q12/t(11;17)(q23;q12). Across 13 KMT2A-r groups, 5-year event-free survival probabilities varied significantly (21.8%-76.2%; P < .01). ACAs occurred in 46.8% of 1200 patients with complete karyotypes, correlating with inferior overall survival (56.8% vs 67.9%; P < .01). Multivariable analyses confirmed independent associations of 4q21/KMT2A::AFF1, 6q27/KMT2A::AFDN, 10p12/KMT2A::MLLT10, 10p11.2/KMT2A::ABI1, and 19p13.3/KMT2A::MLLT1 with adverse outcomes, but not those of 1q21/KMT2A::MLLT11 and trisomy 19 with favorable and adverse outcomes, respectively. Newly identified ACAs with independent adverse prognoses were monosomy 10, trisomies 1, 6, 16, and X, add(12p), and del(9q). Among patients with 9p22/KMT2A::MLLT3, the independent association of French-American-British-type M5 with favorable outcomes was confirmed, and those of trisomy 6 and measurable residual disease at end of induction with adverse outcomes were identified. We provide evidence to incorporate 5 adverse-risk KMT2A fusions into the cytogenetic risk-group stratification of KMT2A-r pediatric AML, to revise the favorable-risk classification of 1q21/KMT2A::MLLT11 to intermediate risk, and to refine the risk-stratification of 9p22/KMT2A::MLLT3 AML. Future studies should validate the associations between the newly identified ACAs and outcomes and unravel the underlying biological pathogenesis of KMT2A fusions and ACAs.
- MeSH
- akutní myeloidní leukemie * genetika mortalita MeSH
- chromozomální aberace MeSH
- dítě MeSH
- genová přestavba MeSH
- histonlysin-N-methyltransferasa * genetika MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- předškolní dítě MeSH
- prognóza MeSH
- protoonkogenní protein MLL * genetika MeSH
- retrospektivní studie MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH