Glucosylated 5-Hydroxymethylpyrimidines as Epigenetic DNA Bases Regulating Transcription and Restriction Cleavage
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00885X
Grantová Agentura České Republiky
22-12023S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
PubMed
35355345
DOI
10.1002/chem.202200911
Knihovny.cz E-zdroje
- Klíčová slova
- epigenetics, glycosylations, nucleobases, nucleotides, transcription,
- MeSH
- DNA řízené RNA-polymerasy MeSH
- DNA * MeSH
- epigeneze genetická * MeSH
- polymerázová řetězová reakce MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA řízené RNA-polymerasy MeSH
- DNA * MeSH
5-(β-d-Glucopyranosyloxymethyl)-2'-deoxyuridine and -cytidine 5'-O-triphosphates were prepared and used for polymerase-mediated (primer extension or PCR) synthesis of DNA containing glucosylated 5-hydroxymethyluracil (5hmU) or 5-hydroxymethyluracil (5hmC). The presence of any glucosylated pyrimidines fully protected DNA from cleavage by type II restriction endonucleases. On the other hand, while the presence of glucosylated 5hmU completely inhibited transcription by bacterial (Escherichia coli) RNA polymerase, the DNA containing the corresponding glucosylated 5hmC allowed a similar level of transcription as natural DNA. This suggests different roles of these hypermodified bases in the epigenetic regulation of transcription in bacteriophages or kinetoplastid parasites. Consequently, enzymatic glucosylation of 5hmC-containing DNA can be used for tuning of transcription activity.
Zobrazit více v PubMed
K. Chen, B. S. Zhao, C. He, Cell Chem. Biol. 2016, 23, 74-85;
X. Lu, B. S. Zhao, C. He, Chem. Rev. 2015, 115, 2225-2239;
T. Carell, M. Q. Kurz, M. Müller, M. Rossa, F. Spada, Angew. Chem. Int. Ed. 2018, 57, 4296-4312;
Angew. Chem. 2018, 130, 4377-4394;
M. K. Bilyard, S. Becker, S. Balasubramanian, Curr. Opin. Chem. Biol. 2020, 57, 1-7.
E.-A. Raiber, R. Hardisty, P. van Delft, S. Balasubramanian, Nat. Chem. Rev. 2017, 1, 0069;
A. Hofer, Z. J. Liu, S. Balasubramanian, J. Am. Chem. Soc. 2019, 141, 6420-6429;
B.-F. Yuan, Chem. Res. Toxicol. 2020, 33, 695-708.
Y.-F. He, B.-Z. Li, Z. Li, P. Liu, Y. Wang, Q. Tang, J. Ding, Y. Jia, Z. Chen, L. Li, Q. Dai, C.-X. Song, K. Zhang, C. He, G.-L. Xu, Science 2011, 333, 1303-1307;
L. Hu, J. Lu, J. Cheng, Q. Rao, Z. Li, H. Hou, Z. Lou, L. Zhang, W. Li, W. Gong, M. Liu, C. Sun, X. Yin, J. Li, X. Tan, P. Wang, Y. Wang, D. Fang, Q. Cui, P. Yang, C. He, H. Jiang, C. Luo, Y. Xu, Nature 2015, 527, 118-122.
R. M. Kohli, Y. Zhang, Nature 2013, 502, 472-479;
A. Schön, E. Kaminska, F. Schelter, E. Ponkkonen, E. Korytiaková, S. Schiffers, T. Carell, Angew. Chem. Int. Ed. 2020, 59, 5591-5594;
Angew. Chem. 2020, 132, 5639-5643.
L. Lercher, M. A. McDonough, A. H. El-Sagheer, A. Thalhammer, S. Kriaucionis, T. Brown, C. J. Schofield, Chem. Commun. 2014, 50, 1794-1796;
L. Wang, Y. Zhou, L. Xu, R. Xiao, X. Lu, L. Chen, J. Chong, H. Li, C. He, X.-D. Fu, D. Wang, Nature 2015, 523, 621-625;
A. Perera, D. Eisen, M. Wagner, S. K. Laube, A. F. Künzel, S. Koch, J. Steinbacher, E. Schulze, V. Splith, N. Mittermeier, M. Müller, M. Biel, T. Carell, S. Michalakis, Cell Rep. 2015, 11, 283-294;
N. Kitsera, J. Allgayer, E. Parsa, N. Geier, M. Rossa, T. Carell, A. Khobta, Nucleic Acids Res. 2017, 45, 11033-11042.
X. Cheng, R. M. Blumenthal, Biochemistry 2010, 49, 2999-3008;
T. T. M. Ngo, J. Yoo, Q. Dai, Q. Zhang, C. He, A. Aksimentiev, T. Ha, Nat. Commun. 2016, 7, 10813;
E.-A. Raiber, P. Murat, D. Y. Chirgadze, D. Beraldi, B. F. Luisi, S. Balasubramanian, Nat. Struct. Mol. Biol. 2015, 22, 44-49;
E.-A. Raiber, G. Portella, S. Martínez Cuesta, R. Hardisty, P. Murat, Z. Li, M. Iurlaro, W. Dean, J. Spindel, D. Beraldi, Z. Liu, M. A. Dawson, W. Reik, S. Balasubramanian, Nat. Chem. 2018, 10, 1258-1266.
R. Olinski, M. Starczak, D. Gackowski, Mutat. Res. 2016, 767, 59-66.
T. Pfaffeneder, F. Spada, M. Wagner, C. Brandmayr, S. K. Laube, D. Eisen, M. Truss, J. Steinbacher, B. Hackner, O. Kotljarova, D. Schuermann, S. Michalakis, O. Kosmatchev, S. Schiesser, B. Steigenberger, N. Raddaoui, G. Kashiwazaki, U. Müller, C. G. Spruijt, M. Vermeulen, H. Leonhardt, P. Schär, M. Müller, T. Carell, Nat. Chem. Biol. 2014, 10, 574-581.
Z. Djuric, L. K. Heilbrun, M. S. Simon, D. Smith, D. A. Luongo, P. M. LoRusso, S. Martino, Cancer 1996, 77, 691-696.
Y.-J. Lee, N. Dai, S. E. Walsh, S. Müller, M. E. Fraser, K. M. Kauffman, C. Guan, I. R. Corrêa, P. R. Weigele, Proc. Natl. Acad. Sci. USA 2018, 115, E3116-E3125;
P. Weigele, E. A. Raleigh, Chem. Rev. 2016, 116, 12655-12687;
G. Hutinet, Y.-J. Lee, V. de Crécy-Lagard, P. R. Weigele, Ecosal Plus 2021, 9, eESP00282019.
F. Kawasaki, D. Beraldi, R. E. Hardisty, G. R. McInroy, P. van Delft, S. Balasubramanian, Genome Biol. 2017, 18, 23.
S. R. Kornberg, S. B. Zimmerman, A. Kornberg, J. Biochem. 1961, 236, 1487-1493;
J. Tomaschewski, H. Gram, J. W. Crabb, W. Rüger, Nucleic Acids Res. 1985, 13, 7551-7568;
S. Moréra, A. Imberty, U. Aschke-Sonnenborn, W. Rüger, P. S. Freemont, J. Mol. Biol. 1999, 292, 717-730.
L. M. Iyer, D. Zhang, A. M. Burroughs, L. Aravind, Nucleic Acids Res. 2013, 41, 7635-7655.
P. Borst, R. Sabatini, Annu. Rev. Microbiol. 2008, 62, 235-251.
P. Borst, F. van Leeuwen, Mol. Biochem. Parasitol. 1997, 90, 1-8;
F. van Leeuwen, E. R. Wijsman, E. Kuyl-Yeheskiely, G. A. van der Marel, J. H. van Boom, P. Borst, Nucleic Acids Res. 1996, 24, 2476-2482;
F. van Leeuwen, E. R. Wijsman, R. Kieft, G. A. van der Marel, J. H. van Boom, P. Borst, Genes Dev. 1997, 11, 3232-3241.
H. G. A. M. van Luenen, C. Farris, S. Jan, P.-A. Genest, P. Tripathi, A. Velds, R. M. Kerkhoven, M. Nieuwland, A. Haydock, G. Ramasamy, S. Vainio, T. Heidebrecht, A. Perrakis, L. Pagie, B. van Steensel, P. J. Myler, P. Borst, Cell 2012, 150, 909-921.
R. Kieft, Y. Zhang, A. P. Marand, J. D. Moran, R. Bridger, L. Wells, R. J. Schmitz, R. Sabatini, PLoS Genet. 2020, 16, e1008390.
K. Flodman, I. R. Corrêa, N. Dai, P. Weigele, S.-Y. Xu, Front. Microbiol. 2020, 11, 604618.
M. Janoušková, Z. Vaníková, F. Nici, S. Boháčová, D. Vítovská, H. Šanderová, M. Hocek, L. Krásný, Chem. Commun. 2017, 53, 13253-13255.
Z. Vaníková, M. Janoušková, M. Kambová, L. Krásný, M. Hocek, Chem. Sci. 2019, 10, 3937-3942.
A. Chakrapani, V. Vaňková Hausnerová, O. Ruiz-Larrabeiti, R. Pohl, L. Krásný, M. Hocek, Org. Lett. 2020, 22, 9081-9085.
S. Boháčová, L. Ludvíková, L. Poštová Slavětínská, Z. Vaníková, P. Klán, M. Hocek, Org. Biomol. Chem. 2018, 16, 1527-1535;
S. Boháčová, Z. Vaníková, L. Poštová Slavětínská, M. Hocek, Org. Biomol. Chem. 2018, 16, 5427-5432.
J. Turner, N. Meeuwenoord, A. Rood, P. Borst, G. van der Marel, J. van Boom, Eur. J. Org. Chem. 2003, 3832-3839;
R. K. Grover, S. J. K. Pond, Q. Cui, P. Subramaniam, D. A. Case, D. P. Millar, P. Wentworth, Angew. Chem. Int. Ed. 2007, 46, 2839-2843;
Angew. Chem. 2007, 119, 2897-2901.
M. de Kort, P. de Visser, J. Kurzeck, N. Meeuwenoord, G. van der Marel, W. Rüger, J. van Boom, Eur. J. Org. Chem. 2001, 2075-2082.
https://international.neb.com/protocols/2018/01/16/protocol-for-m0649.