Activation of Astrocytes and Microglial Cells and CCL2/CCR2 Upregulation in the Dorsolateral and Ventrolateral Nuclei of Periaqueductal Gray and Rostral Ventromedial Medulla Following Different Types of Sciatic Nerve Injury
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
29515373
PubMed Central
PMC5825898
DOI
10.3389/fncel.2018.00040
Knihovny.cz E-resources
- Keywords
- CCL2/CCR2, activated glial cells, nerve injury, neuroinflammation, neuropathic pain model, periaqueductal gray, rostral ventromedial medulla,
- Publication type
- Journal Article MeSH
Peripheral nerve injuries (PNIs) may result in cellular and molecular changes in supraspinal structures possibly involved in neuropathic pain (NPP) maintenance. Activated glial cells in specific supraspinal subregions may affect the facilitatory role of descending pathways. Sterile chronic compression injury (sCCI) and complete sciatic nerve transection (CSNT) in rats were used as NPP models to study the activation of glial cells in the subregions of periaqueductal gray (PAG) and rostral ventromedial medulla (RVM). Molecular markers for activated astrocytes (glial fibrillary acidic protein, GFAP) and microglial cells (OX42) were assessed by quantitative immunohistochemistry and western blotting. The cellular distribution of CCL2/CCR2 was monitored using immunofluorescence. sCCI induced both mechanical and thermal hypersensitivity from day 1 up to 3 weeks post-injury. Unilateral sCCI or CSNT for 3 weeks induced significant activation of astrocytes bilaterally in both dorsolateral (dlPAG) and ventrolateral PAG (vlPAG) compared to naïve or sham-operated rats. More extensive astrocyte activation by CSNT compared to sCCI was induced bilaterally in dlPAG and ipsilaterally in vlPAG. Significantly more extensive activation of astrocytes was also found in RVM after CSNT than sCCI. The CD11b immunopositive region, indicating activated microglial cells, was remarkably larger in dlPAG and vlPAG of both sides from sCCI- and CSNT-operated rats compared to naïve or sham-operated controls. No significant differences in microglial activation were detected in dlPAG or vlPAG after CSNT compared to sCCI. Both nerve injury models induced no significant differences in microglial activation in the RVM. Neurons and activated GFAP+ astrocytes displayed CCL2-immunoreaction, while activated OX42+ microglial cells were CCR2-immunopositive in both PAG and RVM after sCCI and CSNT. Overall, while CSNT induced robust astrogliosis in both PAG and RVM, microglial cell activation was similar in the supraspinal structures in both injury nerve models. Activated astrocytes in PAG and RVM may sustain facilitation of the descending system maintaining NPP, while microglial activation may be associated with a reaction to long-lasting peripheral injury. Microglial activation via CCR2 may be due to neuronal and astrocytal release of CCL2 in PAG and RVM following injury.
See more in PubMed
Abbadie C., Bhangoo S., De Koninck Y., Malcangio M., Melik-Parsadaniantz S., White F. A. (2009). Chemokines and pain mechanisms. Brain Res. Rev. 60, 125–134. 10.1016/j.brainresrev.2008.12.002 PubMed DOI PMC
Abbadie C., Lindia J. A., Cumiskey A. M., Peterson L. B., Mudgett J. S., Bayne E. K., et al. . (2003). Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc. Natl. Acad. Sci. U S A 100, 7947–7952. 10.1073/pnas.1331358100 PubMed DOI PMC
Anderson M. A., Ao Y., Sofroniew M. V. (2014). Heterogeneity of reactive astrocytes. Neurosci. Lett. 565, 23–29. 10.1016/j.neulet.2013.12.030 PubMed DOI PMC
Bee L. A., Dickenson A. H. (2007). Rostral ventromedial medulla control of spinal sensory processing in normal and pathophysiological states. Neuroscience 147, 786–793. 10.1016/j.neuroscience.2007.05.004 PubMed DOI
Bennett G. J., Xie Y. K. (1988). A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107. 10.1016/0304-3959(88)90209-6 PubMed DOI
Berger J. V., Knaepen L., Janssen S. P. M., Jaken R. J. P., Marcus M. A. E., Joosten E. A. J., et al. . (2011). Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. Brain Res. Rev. 67, 282–310. 10.1016/j.brainresrev.2011.03.003 PubMed DOI
Blackbeard J., O’Dea K. P., Wallace V. C., Segerdahl A., Pheby T., Takata M., et al. . (2007). Quantification of the rat spinal microglial response to peripheral nerve injury as revealed by immunohistochemical image analysis and flow cytometry. J. Neurosci. Methods 164, 207–217. 10.1016/j.jneumeth.2007.04.013 PubMed DOI PMC
Boadas-Vaello P., Castany S., Homs J., Álvarez-Pérez B., Deulofeu M., Verdú E. (2016). Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord 54, 330–340. 10.1038/sc.2015.225 PubMed DOI
Boadas-Vaello P., Homs J., Reina F., Carrera A., Verdú E. (2017). Neuroplasticity of supraspinal structures associated with pathological pain. Anat. Rec. (Hoboken) 300, 1481–1501. 10.1002/ar.23587 PubMed DOI
Burnstock G. (2016). Purinergic mechanisms and pain. Adv. Pharmacol. 75, 91–137. 10.1016/bs.apha.2015.09.001 PubMed DOI
Cameron A. A., Khan I. A., Westlund K. N., Willis W. D. (1995). The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. II. Descending projections. J. Comp. Neurol. 351, 585–601. 10.1002/cne.903510408 PubMed DOI
Chu H., Sun J., Xu H., Niu Z., Xu M. (2012). Effect of periaqueductal gray melanocortin 4 receptor in pain facilitation and glial activation in rat model of chronic constriction injury. Neurol. Res. 34, 871–888. 10.1179/1743132812y.0000000085 PubMed DOI
Clark A. K., Old E. A., Malcangio M. (2013). Neuropathic pain and cytokines: current perspectives. J. Pain Res. 6, 803–814. 10.2147/JPR.S53660 PubMed DOI PMC
Clatworthy A. L., Illich P. A., Castro G. A., Walters E. T. (1995). Role of peri-axonal inflammation in the development of thermal hyperalgesia and guarding behavior in a rat model of neuropathic pain. Neurosci. Lett. 184, 5–8. 10.1016/0304-3940(94)11154-b PubMed DOI
Colburn R. W., Rickman A. J., DeLeo J. A. (1999). The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp. Neurol. 157, 289–304. 10.1006/exnr.1999.7065 PubMed DOI
Coyle D. E. (1998). Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia 23, 75–83. 10.1002/(sici)1098-1136(199805)23:1<75::aid-glia7>3.0.co;2-3 PubMed DOI
Dansereau M. A., Gosselin R. D., Pohl M., Pommier B., Mechighel P., Mauborgne A., et al. . (2008). Spinal CCL2 pronociceptive action is no longer effective in CCR2 receptor antagonist-treated rats. J. Neurochem. 106, 757–769. 10.1111/j.1471-4159.2008.05429.x PubMed DOI
DeLeo J. A., Colburn R. W., Nichols M., Malhotra A. (1996). Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res. 16, 695–700. 10.1089/jir.1996.16.695 PubMed DOI
DeLeo J. A., Yezierski R. P. (2001). The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90, 1–6. 10.1016/s0304-3959(00)00490-5 PubMed DOI
Devor M. (1994). “The pathophysiology of damaged peripheral nerves,” in Textbook of Pain, eds Wall P. D., Melzack R. (New York, NY: Elsevier Churchill Livingstone; ), 79–101.
Dubner R., Ren K. (2004). Brainstem mechanisms of persistent pain following injury. J. Orofac. Pain 18, 299–305. PubMed
Dubový P. (2011). Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann. Anat. 193, 267–275. 10.1016/j.aanat.2011.02.011 PubMed DOI
Eidson L. N., Murphy A. Z. (2013). Persistent peripheral inflammation attenuates morphine-induced periaqueductal gray glial cell activation and analgesic tolerance in the male rat. J. Pain 14, 393–404. 10.1016/j.jpain.2012.12.010 PubMed DOI PMC
Fields H. L., Basbaum A. I., Heinricher M. M. (2006). “Central nervous system mechanisms of pain modulation,” in Wall and Melzack’s Textbook of Pain, eds Mc Mahon S. B., Koltzenburg M. (New York, NY: Elsevier Churchill Livingstone; ), 125–142.
Flügel A., Hager G., Horvat A., Spitzer C., Singer G. M., Graeber M. B., et al. . (2001). Neuronal MCP-1 expression in response to remote nerve injury. J. Cereb. Blood Flow Metab. 21, 69–76. 10.1097/00004647-200101000-00009 PubMed DOI
Gao Y. J., Ji R. R. (2010). Targeting astrocyte signaling for chronic pain. Neurotherapeutics 7, 482–493. 10.1016/j.nurt.2010.05.016 PubMed DOI PMC
Gao Y. J., Zhang L., Samad O. A., Suter M. R., Yasuhiko K., Xu Z. Z., et al. . (2009). JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J. Neurosci. 29, 4096–4108. 10.1523/JNEUROSCI.3623-08.2009 PubMed DOI PMC
Gebhart G. F. (2004). Descending modulation of pain. Neurosci. Biobehav. Rev. 27, 729–737. 10.1016/j.neubiorev.2003.11.008 PubMed DOI
Gosselin R. D., Dansereau M. A., Pohl M., Kitabgi P., Beaudet N., Sarret P., et al. . (2008). Chemokine network in the nervous system: a new target for pain relief. Curr. Med. Chem. 15, 2866–2875. 10.2174/092986708786242822 PubMed DOI
Graeber M. B., Streit W. J. (2010). Microglia: biology and pathology. Acta Neuropathol. 119, 89–105. 10.1007/s00401-009-0622-0 PubMed DOI
Guo W., Wang H., Zou S., Dubner R., Ren K. (2012). Chemokine signaling involving chemokine (C-C motif) ligand 2 plays a role in descending pain facilitation. Neurosci. Bull. 28, 193–207. 10.1007/s12264-012-1218-6 PubMed DOI PMC
Hanisch U. K., Kettenmann H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394. 10.1038/nn1997 PubMed DOI
Heinricher M. M., Barbaro N. M., Fields H. L. (1989). Putative nociceptive modulating neurons in the rostral ventromedial medulla of the rat: firing of on- and off-cells is related to nociceptive responsiveness. Somatosens. Mot. Res. 6, 427–439. 10.3109/08990228909144685 PubMed DOI
Heinricher M. M., Tavares I., Leith J. L., Lumb B. M. (2009). Descending control of nociception: specificity, recruitment and plasticity. Brain Res. Rev. 60, 214–225. 10.1016/j.brainresrev.2008.12.009 PubMed DOI PMC
Hu P., Bembrick A. L., Keay K. A., McLachlan E. M. (2007). Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav. Immun. 21, 599–616. 10.1016/j.bbi.2006.10.013 PubMed DOI
Hudson P. M., Lumb B. M. (1996). Neurones in the midbrain periaqueductal grey send collateral projections to nucleus raphe magnus and the rostral ventrolateral medulla in the rat. Brain Res. 733, 138–141. 10.1016/0006-8993(96)00784-6 PubMed DOI
Jeon S. M., Lee K. M., Cho H. J. (2009). Expression of monocyte chemoattractant protein-1 in rat dorsal root ganglia and spinal cord in experimental models of neuropathic pain. Brain Res. 1251, 103–111. 10.1016/j.brainres.2008.11.046 PubMed DOI
Jones A. K. P., Kulkarni B., Derbyshire S. W. G. (2003). Pain mechanisms and their disorders. Br. Med. Bull. 65, 83–93. 10.1093/bmb/65.1.83 PubMed DOI
Jung H., Bhangoo S., Banisadr G., Freitag C., Ren D., White F. A., et al. . (2009). Visualization of chemokine receptor activation in transgenic mice reveals peripheral activation of CCR2 receptors in states of neuropathic pain. J. Neurosci. 29, 8051–8062. 10.1523/JNEUROSCI.0485-09.2009 PubMed DOI PMC
Keay K. A., Bandler R. (2001). Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neurosci. Biobehav. Rev. 25, 669–678. 10.1016/s0149-7634(01)00049-5 PubMed DOI
Keay K. A., Feil K., Gordon B. D., Herbert H., Bandler R. (1997). Spinal afferents to functionally distinct periaqueductal gray columns in the rat: an anterograde and retrograde tracing study. J. Comp. Neurol. 385, 207–229. 10.1002/(sici)1096-9861(19970825)385:2<207::aid-cne3>3.0.co;2-5 PubMed DOI
Klusáková I., Dubový P. (2009). Experimental models of peripheral neuropathic pain based on traumatic nerve injuries—an anatomical perspective. Ann. Anat. 191, 248–259. 10.1016/j.aanat.2009.02.007 PubMed DOI
Lane D. A., Tortorici V., Morgan M. M. (2004). Behavioral and electrophysiological evidence for tolerance to continuous morphine administration into the ventrolateral periaqueductal gray. Neuroscience 125, 63–69. 10.1016/j.neuroscience.2004.01.023 PubMed DOI
Latremoliere A., Woolf C. J. (2009). Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926. 10.1016/j.jpain.2009.06.012 PubMed DOI PMC
Leong M. L., Gu M., Speltz-Paiz R., Stahura E. I., Mottey N., Steer C. J., et al. . (2011). Neuronal loss in the rostral ventromedial medulla in a rat model of neuropathic pain. J. Neurosci. 31, 17028–17039. 10.1523/JNEUROSCI.1268-11.2011 PubMed DOI PMC
Leong M. L., Speltz R., Wessendorf M. (2016). Effects of chronic constriction injury and spared nerve injury, two models of neuropathic pain, on the numbers of neurons and glia in the rostral ventromedial medulla. Neurosci. Lett. 617, 82–87. 10.1016/j.neulet.2016.02.006 PubMed DOI PMC
Liu X., Eschenfelder S., Blenk K. H., Jänig W., Häbler H. (2000). Spontaneous activity of axotomized afferent neurons after L5 spinal nerve injury in rats. Pain 84, 309–318. 10.1016/s0304-3959(99)00211-0 PubMed DOI
Lovick T., Bandler R. (2005). “The organization of the midbrain periaqueductal grey and the integration of pain behaviours,” in The Neurobiology of Pain, eds Hunt S. P., Koltzenburg M. (Oxford, UK: Oxford University Press; ), 267–287.
Maves T. J., Pechman P. S., Gebhart G. F., Meller S. T. (1993). Possible chemical contribution from chromic gut sutures produces disorders of pain sensation like those seen in man. Pain 54, 57–69. 10.1016/0304-3959(93)90198-x PubMed DOI
McMullan S., Lumb B. M. (2006). Midbrain control of spinal nociception discriminates between responses evoked by myelinated and unmyelinated heat nociceptors in the rat. Pain 124, 59–68. 10.1016/j.pain.2006.03.015 PubMed DOI
Milligan E. D., Watkins L. R. (2009). Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 10, 23–36. 10.1038/nrn2533 PubMed DOI PMC
Monassi C. R., Bandler R., Keay K. A. (2003). A subpopulation of rats shows social and sleep-waking changes typical of chronic neuropathic pain following peripheral nerve injury. Eur. J. Neurosci. 17, 1907–1920. 10.1046/j.1460-9568.2003.02627.x PubMed DOI
Mor D., Bembrick A. L., Austin P. J., Keay K. A. (2011). Evidence for cellular injury in the midbrain of rats following chronic constriction injury of the sciatic nerve. J. Chem. Neuroanat. 41, 158–169. 10.1016/j.jchemneu.2011.01.004 PubMed DOI
Mor D., Bembrick A. L., Austin P. J., Wyllie P. M., Creber N. J., Denyer G. S., et al. . (2010). Anatomically specific patterns of glial activation in the periaqueductal gray of the sub-population of rats showing pain and disability following chronic constriction injury of the sciatic nerve. Neuroscience 166, 1167–1184. 10.1016/j.neuroscience.2010.01.045 PubMed DOI
Ni H. D., Yao M., Huang B., Xu L. S., Zheng Y., Chu Y. X., et al. . (2016). Glial activation in the periaqueductal gray promotes descending facilitation of neuropathic pain through the p38 MAPK signaling pathway. J. Neurosci. Res. 94, 50–61. 10.1002/jnr.23672 PubMed DOI
Norman G. J., Karelina K., Zhang N., Walton J. C., Morris J. S., Devries A. C. (2010). Stress and IL-1β contribute to the development of depressive-like behavior following peripheral nerve injury. Mol. Psychiatry 15, 404–414. 10.1038/mp.2009.91 PubMed DOI PMC
Omana-Zapata I., Khabbaz M. A., Hunter J. C., Clarke D. E., Bley K. R. (1997). Tetrodotoxin inhibits neuropathic ectopic activity in neuromas, dorsal root ganglia and dorsal horn neurons. Pain 72, 41–49. 10.1016/s0304-3959(97)00012-2 PubMed DOI
Paxinos G., Watson C. (1997). The Rat Brain in Stereotaxic Coordinates. San Diego, CA: Elsevier Academic Press.
Pekny M., Nilsson M. (2005). Astrocyte activation and reactive gliosis. Glia 50, 427–434. 10.1002/glia.20207 PubMed DOI
Pekny M., Pekna M. (2004). Astrocyte intermediate filaments in CNS pathologies and regeneration. J. Pathol. 204, 428–437. 10.1002/path.1645 PubMed DOI
Pekny M., Pekna M. (2014). Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol. Rev. 94, 1077–1098. 10.1152/physrev.00041.2013 PubMed DOI
Pertovaara A., Wei H., Hämäläinen M. M. (1996). Lidocaine in the rostroventromedial medulla and the periaqueductal gray attenuates allodynia in neuropathic rats. Neurosci. Lett. 218, 127–130. 10.1016/s0304-3940(96)13136-0 PubMed DOI
Porreca F., Ossipov M. H., Gebhart G. F. (2002). Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325. 10.1016/s0166-2236(02)02157-4 PubMed DOI
Ridet J. L., Malhotra S. K., Privat A., Gage F. H. (1997). Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 20, 570–577. 10.1016/s0166-2236(97)01139-9 PubMed DOI
Schaible H. G. (2007). Peripheral and central mechanisms of pain generation. Handb. Exp. Pharmacol 177, 3–28. 10.1007/978-3-540-33823-9_1 PubMed DOI
Sofroniew M. V., Vinters H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35. 10.1007/s00401-009-0619-8 PubMed DOI PMC
Streit W. J., Walter S. A., Pennell N. A. (1999). Reactive microgliosis. Prog. Neurobiol. 57, 563–581. 10.1016/s0301-0082(98)00069-0 PubMed DOI
Suplita R. L., II., Farthing J. N., Gutierrez T., Hohmann A. G. (2005). Inhibition of fatty-acid amide hydrolase enhances cannabinoid stress-induced analgesia: sites of action in the dorsolateral periaqueductal gray and rostral ventromedial medulla. Neuropharmacology 49, 1201–1209. 10.1016/j.neuropharm.2005.07.007 PubMed DOI
Suzuki R., Rahman W., Hunt S. P., Dickenson A. H. (2004). Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurons following peripheral nerve injury. Brain Res. 1019, 68–76. 10.1016/j.brainres.2004.05.108 PubMed DOI
Tanaka T., Minami M., Nakagawa T., Satoh M. (2004). Enhanced production of monocyte chemoattractant protein-1 in the dorsal root ganglia in a rat model of neuropathic pain: possible involvement in the development of neuropathic pain. Neurosci. Res. 48, 463–469. 10.1016/j.neures.2004.01.004 PubMed DOI
Thacker M. A., Clark A. K., Bishop T., Grist J., Yip P. K., Moon L. D., et al. . (2009). CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur. J. Pain 13, 263–272. 10.1016/j.ejpain.2008.04.017 PubMed DOI
Van Steenwinckel J., Reaux-Le Goazigo A., Pommier B., Mauborgne A., Dansereau M. A., Kitabgi P., et al. . (2011). CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J. Neurosci. 31, 5865–5875. 10.1523/JNEUROSCI.5986-10.2011 PubMed DOI PMC
Vanegas H., Schaible H. G. (2004). Descending control of persistent pain: inhibitory or facilitatory? Brain Res. Rev. 46, 295–309. 10.1016/j.brainresrev.2004.07.004 PubMed DOI
Vera-Portocarrero L. P., Xie J. Y., Kowal J., Ossipov M. H., King T., Porreca F. (2006). Descending facilitation from the rostral ventromedial medulla maintains visceral pain in rats with experimental pancreatitis. Gastroenterology 130, 2155–2164. 10.1053/j.gastro.2006.03.025 PubMed DOI
Vranken J. H. (2009). Mechanisms and treatment of neuropathic pain. Cent. Nerv. Syst. Agents Med. Chem. 9, 71–78. 10.2174/187152409787601932 PubMed DOI
Vranken J. H. (2012). Elucidation of pathophysiology and treatment of neuropathic pain. Cent. Nerv. Syst. Agents Med. Chem. 12, 304–314. 10.2174/187152412803760645 PubMed DOI
Watkins L. R., Milligan E. D., Maier S. F. (2003). Glial proinflammatory cytokines mediate exaggerated pain states: Implications for clinical pain. Adv. Exp. Med. Biol. 521, 1–21. PubMed
Wei F., Guo W., Zou S., Ren K., Dubner R. (2008). Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J. Neurosci. 28, 10482–10495. 10.1523/JNEUROSCI.3593-08.2008 PubMed DOI PMC
White F. A., Jung H., Miller R. J. (2007). Chemokines and the pathophysiology of neuropathic pain. Proc. Natl. Acad. Sci. U S A 104, 20151–20158. 10.1073/pnas.0709250104 PubMed DOI PMC
White F. A., Miller R. J. (2010). Insights into the regulation of chemokine receptors by molecular signaling pathways: functional roles in neuropathic pain. Brain Behav. Immun. 24, 859–865. 10.1016/j.bbi.2010.03.007 PubMed DOI PMC
White F. A., Sun J., Waters S. M., Ma C., Ren D., Ripsch M., et al. . (2005). Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc. Natl. Acad. Sci. U S A 102, 14092–14097. 10.1073/pnas.0503496102 PubMed DOI PMC
Wilson-Poe A. R., Pocius E., Herschbach M., Morgan M. M. (2013). The periaqueductal gray contributes to bidirectional enhancement of antinociception between morphine and cannabinoids. Pharmacol. Biochem. Behav. 103, 444–449. 10.1016/j.pbb.2012.10.002 PubMed DOI PMC
Woolf C. J. (2011). Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15. 10.1016/j.pain.2010.09.030 PubMed DOI PMC
Woolf C. J., Mannion R. J. (1999). Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353, 1959–1964. 10.1016/s0140-6736(99)01307-0 PubMed DOI
Yezierski R. P., Mendez C. M. (1991). Spinal distribution and collateral projections of rat spinomesencephalic tract cells. Neuroscience 44, 113–130. 10.1016/0306-4522(91)90254-l PubMed DOI
Zamboni L., Demartin C. (1967). Buffered picric acid-formaldehyde—a new rapid fixative for electron microscopy. J. Cell Biol. 35:148A.
Zhang J., De Koninck Y. (2006). Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J. Neurochem. 97, 772–783. 10.1111/j.1471-4159.2006.03746.x PubMed DOI
Zimmermann M. (2001). Pathobiology of neuropathic pain. Eur. J. Pharmacol. 429, 23–37. 10.1016/s0014-2999(01)01303-6 PubMed DOI