Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R25 CA148052
NCI NIH HHS - United States
PubMed
25336437
PubMed Central
PMC4411186
DOI
10.1002/adhm.201400421
Knihovny.cz E-zdroje
- Klíčová slova
- ablation, cancer, gold, nanodiamonds, plasmonics,
- MeSH
- ablace metody MeSH
- biokompatibilní materiály farmakokinetika MeSH
- cílená molekulární terapie metody MeSH
- HeLa buňky účinky léků MeSH
- indukovaná hypertermie metody MeSH
- karbocyaniny chemie MeSH
- laserová terapie metody MeSH
- lidé MeSH
- nanočástice chemie MeSH
- nanodiamanty chemie MeSH
- nanoslupky chemie MeSH
- polyethylenglykoly chemie MeSH
- receptory transferinu metabolismus MeSH
- transferin chemie farmakologie MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- Alexa Fluor 647 MeSH Prohlížeč
- biokompatibilní materiály MeSH
- karbocyaniny MeSH
- nanodiamanty MeSH
- polyethylenglykoly MeSH
- receptory transferinu MeSH
- transferin MeSH
- zlato MeSH
Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser.
Zobrazit více v PubMed
Khlebtsov NG, Dykman LA. J. Quant. Spectrosc. Radiat. Transf. 2010;111:1.
Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA. Chem. Rev. 2011;111:3736. PubMed
Daniel MC, Astruc D. Chem. Rev. 2004;104:293. PubMed
Henry A-I, Bingham JM, Ringe E, Marks LD, Schatz GC, Van Duyne RP. J. Phys. Chem. C. 2011;115:9291.
Agrawal A, Huang S, Wei Haw Lin A, Barton JK, Drezek RA, Pfefer TJ, Lee M-H. J. Biomed. Opt. 2006;11:041121. PubMed
Kah JCY, Chow TH, Ng BK, Razul SG, Olivo M, Sheppard CJR. Appl. Opt. 2009;48:D96. PubMed
Chen Y-S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S. Nano Lett. 2011;11:348. PubMed PMC
Stern JM, Stanfield J, Kabbani W, Hsieh J-T, Cadeddu JA. J. Urol. 2008;179:748. PubMed
Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, Li C. Clin. Cancer Res. 2009;15:876. PubMed PMC
Huang X, El-Sayed IH, Qian W, El-Sayed MA. J. Am. Chem. Soc. 2010;128:2115. PubMed
Wu G, Mikhailovsky A, Khant HA, Fu C, Chiu W, Zasadzinski JA. J. Am. Chem. Soc. 2008;130:8175. PubMed PMC
Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ. J. Phys. Chem. C. 2010;114:7378.
Bardhan R, Lal S, Joshi A, Halas NJ. Acc. Chem. Res. 2011;44:936. PubMed PMC
Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Nano Lett. 2007;7:1929. PubMed
Chow EK, Zhang X-Q, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D. Sci Transl Med. 2011;3:73ra21. PubMed
Vaijayanthimala V, Cheng P-Y, Yeh S-H, Liu K-K, Hsiao C-H, Chao J-I, Chang H-C. Biomaterials. 2012;33:7794. PubMed
Hui YY, Cheng CL, Chang HC. J. Phys. Appl. Phys. 2010;43:374021.
Slegerova J, Hajek M, Rehor I, Sedlak F, Stursa J, Hruby M, Cigler P. Nanoscale. 2014 PubMed
Slegerova J, Rehor I, Havlik J, Raabova H, Muchova E, Cigler P. In: Intracellular Delivery II. Prokop A, Iwasaki Y, Harada A, editors. Springer, Netherlands: Dordrecht; 2014. pp. 363–401.
Lim T-S, Fu C-C, Lee K-C, Lee H-Y, Chen K, Cheng W-F, Pai WW, Chang H-C, Fann W. Phys. Chem. Chem. Phys. 2009;11:1508. PubMed
Schietinger S, Barth M, Aichele T, Benson O. Nano Lett. 2009;9:1694. PubMed
Yung Hui Y, Lu Y-C, Su L-J, Fang C-Y, Hsu J-H, Chang H-C. Appl. Phys. Lett. 2013;102:013102.
Barth M, Schietinger S, Schröder T, Aichele T, Benson O. J. Lumin. 2010;130:1628.
Chen G, Liu Y, Song M, Wu B, Wu E, Zeng H. IEEE J. Sel. Top. Quantum Electron. 2013;19:4602404.
Chi Y, Chen G, Jelezko F, Wu E, Zeng H. IEEE Photonics Technol. Lett. 2011;23:374.
Rehor I, Mackova H, Filippov SK, Kucka J, Proks V, Slegerova J, Turner S, Van Tendeloo G, Ledvina M, Hruby M, Cigler P. ChemPlusChem. 2014;79:21. PubMed
Zhang B, Fang C-Y, Chang C-C, Peterson R, Maswadi S, Glickman RD, Chang H-C, Ye JY. Biomed. Opt. Express. 2012;3:1662. PubMed PMC
Ismaili H, Workentin MS. Chem. Commun. 2011;47:7788. PubMed
Cheng L-C, Chen HM, Lai T-C, Chan Y-C, Liu R-S, Sung JC, Hsiao M, Chen C-H, Her L-J, Tsai DP. Nanoscale. 2008;5:3931. PubMed
Liu YL, Sun KW. Appl. Phys. Lett. 2011;98:153702.
Rehor I, Slegerova J, Kucka J, Proks V, Petrakova V, Adam M-P, Treussart F, Turner S, Bals S, Sacha P, Ledvina M, Wen AM, Steinmetz NF, Cigler P. Small. 2014;10:1106. PubMed PMC
Brinson BE, Lassiter JB, Levin CS, Bardhan R, Mirin N, Halas NJ. Langmuir. 2008;24:14166. PubMed PMC
Oldenburg S, Averitt R, Westcott S, Halas N. Chem. Phys. Lett. 1998;288:243.
Rasch MR, Sokolov KV, Korgel BA. Langmuir. 2009;25:11777. PubMed PMC
Prokop A, Davidson JM. J. Pharm. Sci. 2008;97:3518. PubMed PMC
Mei BC, Susumu K, Medintz IL, Delehanty JB, Mountziaris TJ, Mattoussi H. J. Mater. Chem. 2008;18:4949.
Presolski SI, Hong VP, Finn MG. Curr. Protoc. Chem. Biol. 2011;3:153. PubMed PMC
Daniels TR, Delgado T, Helguera G, Penichet ML. Clin. Immunol. 2006;121:159. PubMed
Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, Ljubimova JY, Helguera G, Penichet ML. Biochim. Biophys. Acta BBA - Gen. Subj. 2012;1820:291. PubMed PMC
Huang RK, Steinmetz NF, Fu C-Y, Manchester M, Johnson JE. Nanomed. 2006;6:55. PubMed PMC
Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O, Ogiwara N, Johkura K, Yonemura Y. Int. J. Cancer. 2002;99:130. PubMed
Weng M-F, Chang B-J, Chiang S-Y, Wang N-S, Niu H. Diam. Relat. Mater. 2012;22:96.
Chang B-M, Lin H-H, Su L-J, Lin W-D, Lin R-J, Tzeng Y-K, Lee RT, Lee YC, Yu AL, Chang H-C. Adv. Funct. Mater. 2013;23:5737.
Banerjee D, Liu AP, Voss NR, Schmid SL, Finn MG. ChemBioChem. 2010;11:1273. PubMed PMC
Kang KA, Wang J, Jasinski JB, Achilefu S. J. Nanobiotechnology. 2011;9:16. PubMed PMC
de Gennes PG. Adv. Colloid Interface Sci. 1987;27:189.
Bernardi RJ, Lowery AR, Thompson PA, Blaney SM, West JL. J. Neurooncol. 2008;86:165. PubMed
Farokhzad OC, Langer R. ACS Nano. 2009;3:16. PubMed
Ferrari M. Nat. Rev. Cancer. 2005;5:161. PubMed
Chow EK-H, Ho D. Sci. Transl. Med. 2013;5:216rv4. PubMed
Webb JA, Bardhan R. Nanoscale. 2014;6:2502. PubMed
Howarth M, Wenhao Liu, Puthenveetil S, Zheng Yi, Marshall LF, Schmidt MM, Wittrup KD, Bawendi MG, Ting AY. Nat. Methods. 2008;5:397. PubMed PMC
Rehor I, Cigler P. Diam. Relat. Mater. 2014;46:21.
Susumu K, Mei BC, Mattoussi H. Nat. Protoc. 2009;4:424. PubMed
Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C. Nano Lett. 2010;10:3692. PubMed
Graf C, Vossen DLJ, Imhof A, van Blaaderen A. Langmuir. 2003;19:6693.
Hong V, Presolski SI, Ma C, Finn MG. Angew. Chem. Int. Ed. 2009;48:9879. PubMed PMC