Extremely rapid isotropic irradiation of nanoparticles with ions generated in situ by a nuclear reaction

. 2018 Oct 26 ; 9 (1) : 4467. [epub] 20181026

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30367036
Odkazy

PubMed 30367036
PubMed Central PMC6203839
DOI 10.1038/s41467-018-06789-8
PII: 10.1038/s41467-018-06789-8
Knihovny.cz E-zdroje

Energetic ions represent an important tool for the creation of controlled structural defects in solid nanomaterials. However, the current preparative irradiation techniques in accelerators show significant limitations in scaling-up, because only very thin layers of nanoparticles can be efficiently and homogeneously irradiated. Here, we show an easily scalable method for rapid irradiation of nanomaterials by light ions formed homogeneously in situ by a nuclear reaction. The target nanoparticles are embedded in B2O3 and placed in a neutron flux. Neutrons captured by 10B generate an isotropic flux of energetic α particles and 7Li+ ions that uniformly irradiates the surrounding nanoparticles. We produced 70 g of fluorescent nanodiamonds in an approximately 30-minute irradiation session, as well as fluorescent silicon carbide nanoparticles. Our method thus increased current preparative yields by a factor of 102-103. We envision that our technique will increase the production of ion-irradiated nanoparticles, facilitating their use in various applications.

Zobrazit více v PubMed

Dhara S. Formation, dynamics, and characterization of nanostructures by ion beam irradiation. Crit. Rev. Solid State Mater. Sci. 2007;32:1–50. doi: 10.1080/10408430601187624. DOI

Krasheninnikov AV, Nordlund K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 2010;107:71301. doi: 10.1063/1.3318261. DOI

Chang YR, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 2008;3:284–288. doi: 10.1038/nnano.2008.99. PubMed DOI

Alessi A, et al. Alpha and deuteron irradiation effects on silica nanoparticles. J. Mater. Sci. 2014;49:6475–6484. doi: 10.1007/s10853-014-8381-2. DOI

Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat. Photonics. 2016;10:631–641. doi: 10.1038/nphoton.2016.186. DOI

Andrievskii RA. Effect of irradiation on the properties of nanomaterials. Phys. Met. Metallogr. 2010;110:229–240. doi: 10.1134/S0031918X10090061. DOI

Roorda S, et al. Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles. Adv. Mater. 2004;16:235–237. doi: 10.1002/adma.200305742. DOI

Fassbender J, Ravelosona D, Samson Y. Tailoring magnetism by light-ion irradiation. J. Phys. Appl. Phys. 2004;37:R179–R196. doi: 10.1088/0022-3727/37/16/R01. DOI

Kozlov VA, Kozlovski VV. Doping of semiconductors using radiation defects produced by irradiation with protons and alpha particles. Semiconductors. 2001;35:735–761. doi: 10.1134/1.1385708. DOI

Krasheninnikov AV, Banhart F. Engineering of nanostructured carbon materials with electron or ion beams. Nat. Mater. 2007;6:723–733. doi: 10.1038/nmat1996. PubMed DOI

Perez-Campana C, et al. Tracing nanoparticles in vivo: a new general synthesis of positron emitting metal oxide nanoparticles by proton beam activation. Analyst. 2012;137:4902–4906. doi: 10.1039/c2an35863h. PubMed DOI

Gibson N, et al. Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators. Arch. Toxicol. 2011;85:751–773. doi: 10.1007/s00204-011-0701-6. PubMed DOI

Lehtinen O, et al. Ion irradiation of multi-walled boron nitride nanotubes. Phys. Status Solidi C. 2010;7:1256–1259.

Lehtinen O, Kotakoski J, Krasheninnikov AV, Keinonen J. Cutting and controlled modification of graphene with ion beams. Nanotechnology. 2011;22:175306. doi: 10.1088/0957-4484/22/17/175306. PubMed DOI

Aitkaliyeva A, Shao L. The production of amorphous regions in carbon nanotubes by 140keV He ion irradiation. Carbon N. Y. 2012;50:4680–4684. doi: 10.1016/j.carbon.2012.05.058. DOI

Tongay S, et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 2013;3:2657. doi: 10.1038/srep02657. PubMed DOI PMC

Wiedwald U, et al. Lowering of the L1 0 ordering temperature of FePt nanoparticles by He+ion irradiation. Appl. Phys. Lett. 2007;90:62508. doi: 10.1063/1.2472177. DOI

El-Badry BA, Zaki MF, Abdul-Kader AM, Hegazy TM, Morsy AA. Ion bombardment of Poly-Allyl-Diglycol-Carbonate (CR-39) Vacuum. 2009;83:1138–1142. doi: 10.1016/j.vacuum.2009.02.010. DOI

Stursa J, et al. Mass production of fluorescent nanodiamonds with a narrow emission intensity distribution. Carbon. 2016;96:812–818. doi: 10.1016/j.carbon.2015.09.111. DOI

Holzwarth U, et al. Radiolabelling of nanoparticles by proton irradiation: temperature control in nanoparticulate powder targets. J. Nanopart. Res. 2012;14:880. doi: 10.1007/s11051-012-0880-y. DOI

Mahfouz R, et al. Size-controlled fluorescent nanodiamonds: a facile method of fabrication and color-center counting. Nanoscale. 2013;5:11776–11782. doi: 10.1039/c3nr03320a. PubMed DOI

Balasubramanian G, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature. 2008;455:648–651. doi: 10.1038/nature07278. PubMed DOI

Maze JR, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature. 2008;455:644–647. doi: 10.1038/nature07279. PubMed DOI

Laraoui A, Hodges JS, Meriles CA. Nitrogen-vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal. Nano. Lett. 2012;12:3477–3482. doi: 10.1021/nl300964g. PubMed DOI

Dolde F, et al. Electric-field sensing using single diamond spins. Nat. Phys. 2011;7:459–463. doi: 10.1038/nphys1969. DOI

Aharonovich I, Greentree AD, Prawer S. Diamond photonics. Nat. Photonics. 2011;5:397–405. doi: 10.1038/nphoton.2011.54. DOI

Petrakova V, et al. Charge-sensitive fluorescent nanosensors created from nanodiamonds. Nanoscale. 2015;7:12307–12311. doi: 10.1039/C5NR00712G. PubMed DOI

Petrakova V, et al. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. Nanoscale. 2016;8:12002–12012. doi: 10.1039/C6NR00610H. PubMed DOI

Rendler T, et al. Optical imaging of localized chemical events using programmable diamond quantum nanosensors. Nat. Commun. 2017;8:14701. doi: 10.1038/ncomms14701. PubMed DOI PMC

Taylor JM, et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 2008;4:810–816. doi: 10.1038/nphys1075. DOI

Gruber A, et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science. 1997;276:2012–2014. doi: 10.1126/science.276.5321.2012. DOI

Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano. Lett. 2010;10:3692–3699. doi: 10.1021/nl1021909. PubMed DOI

Slegerova J, et al. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells. Nanoscale. 2015;7:415–420. doi: 10.1039/C4NR02776K. PubMed DOI

Kovaříček P, et al. Proton-gradient-driven oriented motion of nanodiamonds grafted to graphene by dynamic covalent bonds. ACS Nano. 2018;12:7141–7147. doi: 10.1021/acsnano.8b03015. PubMed DOI

Chow EK, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 2011;3:73ra21. doi: 10.1126/scitranslmed.3001713. PubMed DOI

Alhaddad A, et al. Nanodiamond as a vector for siRNA delivery to ewing sarcoma cells. Small. 2011;7:3087–3095. doi: 10.1002/smll.201101193. PubMed DOI

Zhao L, et al. Platinum on nanodiamond: a promising prodrug conjugated with stealth polyglycerol, targeting peptide and acid-responsive antitumor drug. Adv. Funct. Mater. 2014;24:5348–5357. doi: 10.1002/adfm.201304298. DOI

Rehor I, et al. Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation. Adv. Healthc. Mater. 2015;4:460–468. doi: 10.1002/adhm.201400421. PubMed DOI PMC

Kozák O, et al. Photoluminescent carbon nanostructures. Chem. Mater. 2016;28:4085–4128. doi: 10.1021/acs.chemmater.6b01372. DOI

Sotoma S, et al. Effective production of fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy centers by ion irradiation. Diam. Relat. Mater. 2014;49:33–38. doi: 10.1016/j.diamond.2014.07.011. DOI

Havlik J, et al. Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale. 2013;5:3208–3211. doi: 10.1039/c2nr32778c. PubMed DOI

Boudou JP, et al. High yield fabrication of fluorescent nanodiamonds. Nanotechnology. 2009;20:235602. doi: 10.1088/0957-4484/20/23/235602. PubMed DOI PMC

Dantelle G, et al. Efficient production of NV colour centres in nanodiamonds using high-energy electron irradiation. J. Lumin. 2010;130:1655–1658. doi: 10.1016/j.jlumin.2009.12.003. DOI

Remes Z, et al. N-V-related fluorescence of the monoenergetic high-energy electron-irradiated diamond nanoparticles: N-V-related fluorescence of electron-irradiated diamond nanoparticles. Phys. Status Solidi A. 2015;212:2519–2524. doi: 10.1002/pssa.201532180. DOI

Nagl A, Hemelaar SR, Schirhagl R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—a review. Anal. Bioanal. Chem. 2015;407:7521–7536. doi: 10.1007/s00216-015-8849-1. PubMed DOI PMC

Hsiao WWW, Hui YY, Tsai PC, Chang HC. Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res. 2016;49:400–407. doi: 10.1021/acs.accounts.5b00484. PubMed DOI

Jagannadham K, Verghese K, Butler JE. Thermal conductivity changes upon neutron transmutation of 10B doped diamond. J. Appl. Phys. 2014;116:83706. doi: 10.1063/1.4892888. DOI

Walker SJ. Boron neutron capture therapy: principles and prospects. Radiography. 1998;4:211–219. doi: 10.1016/S1078-8174(98)80048-5. DOI

Chilian C, St-Pierre J, Kennedy G. Complete thermal and epithermal neutron self-shielding corrections for NAA using a spreadsheet. J. Radioanal. Nucl. Chem. 2008;278:745–749. doi: 10.1007/s10967-008-1604-8. DOI

Ziegler JF, Ziegler MD, Biersack JP. SRIM—the stopping and range of ions in matter (2010) Nuclear Instrum. Methods Phys. Res. Sec. B Beam Interact. Mater. Atoms. 2010;268:1818–1823. doi: 10.1016/j.nimb.2010.02.091. DOI

Rehor I, et al. Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. ChemPlusChem. 2014;79:21–24. doi: 10.1002/cplu.201300339. PubMed DOI

De Vita A, Galli G, Canning A, Car R. A microscopic model for surface-induced diamond-to-graphite transitions. Nature. 1996;379:523–526. doi: 10.1038/379523a0. DOI

Orwa JO, Nugent KW, Jamieson DN, Prawer S. Raman investigation of damage caused by deep ion implantation in diamond. Phys. Rev. B. 2000;62:5461–5472. doi: 10.1103/PhysRevB.62.5461. DOI

Waldermann FC, et al. Creating diamond color centers for quantum optical applications. Diam. Relat. Mater. 2007;16:1887–1895. doi: 10.1016/j.diamond.2007.09.009. DOI

Greentree AD, et al. Critical components for diamond-based quantum coherent devices. J. Phys. Condens. Matter. 2006;18:S825–S842. doi: 10.1088/0953-8984/18/21/S09. DOI

Doherty MW, et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 2013;528:1–45. doi: 10.1016/j.physrep.2013.02.001. DOI

Davies G. Approximate widths of zero phonon lines broadened by point defect strain fields. J. Phys. Appl. Phys. 1971;4:1340–1345. doi: 10.1088/0022-3727/4/9/314. DOI

Biktagirov TB, et al. Strain broadening of the 1042-nm zero phonon line of the NV—center in diamond: a promising spectroscopic tool for defect tomography. Phys. Rev. B. 2017;96:075205. doi: 10.1103/PhysRevB.96.075205. DOI

Sotoma S, et al. Comprehensive and quantitative analysis for controlling the physical/chemical states and particle properties of nanodiamonds for biological applications. RSC Adv. 2015;5:13818–13827. doi: 10.1039/C4RA16482B. DOI

Mita Y. Change of absorption spectra in type-Ib diamond with heavy neutron irradiation. Phys. Rev. B. 1996;53:11360–11364. doi: 10.1103/PhysRevB.53.11360. PubMed DOI

Putz S, et al. Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED. Nat. Phys. 2014;10:720–724. doi: 10.1038/nphys3050. DOI

Nöbauer, T. et al. Creation of ensembles of nitrogen-vacancy centers in diamond by neutron and electron irradiation. Preprint at http://arxiv.org/abs/1309.0453 (2013).

Järvi TT, Kuronen A, Nordlund K, Albe K. Damage production in nanoparticles under light ion irradiation. Phys. Rev. B. 2009;80:132101. doi: 10.1103/PhysRevB.80.132101. DOI

Petrakova V, et al. Luminescence of nanodiamond driven by atomic functionalization: towards novel detection principles. Adv. Funct. Mater. 2012;22:812–819. doi: 10.1002/adfm.201101936. DOI

Petrakova V, et al. Luminescence properties of engineered nitrogen vacancy centers in a close surface proximity. Phys. Status Solidi A. 2011;208:2051–2056. doi: 10.1002/pssa.201100035. DOI

Havlik J, et al. Benchtop fluorination of fluorescent nanodiamonds on a preparative scale: toward unusually hydrophilic bright particles. Adv. Funct. Mater. 2016;26:4134–4142. doi: 10.1002/adfm.201504857. DOI

Falk AL, et al. Polytype control of spin qubits in silicon carbide. Nat. Commun. 2013;4:1819. doi: 10.1038/ncomms2854. PubMed DOI PMC

Koehl WF, Buckley BB, Heremans FJ, Calusine G, Awschalom DD. Room temperature coherent control of defect spin qubits in silicon carbide. Nature. 2011;479:84–87. doi: 10.1038/nature10562. PubMed DOI

Castelletto S, et al. A silicon carbide room-temperature single-photon source. Nat. Mater. 2013;13:151–156. doi: 10.1038/nmat3806. PubMed DOI

Castelletto S, et al. Room temperature quantum emission from cubic silicon carbide nanoparticles. ACS Nano. 2014;8:7938–7947. doi: 10.1021/nn502719y. PubMed DOI

Fan J, et al. 3C–SiC nanocrystals as fluorescent biological labels. Small. 2008;4:1058–1062. doi: 10.1002/smll.200800080. PubMed DOI

Wang LF, et al. Identification of nasopharyngeal carcinoma from photoluminescence spectra of 3C-SiC nanocrystals. J. Appl. Phys. 2017;122:124702. doi: 10.1063/1.4993964. DOI

Beke D, et al. Silicon carbide quantum dots for bioimaging. J. Mater. Res. 2013;28:205–209. doi: 10.1557/jmr.2012.296. DOI

Itoh H, et al. Intrinsic defects in cubic silicon carbide. Phys. Status Solidi A. 1997;162:173–198. doi: 10.1002/1521-396X(199707)162:1<173::AID-PSSA173>3.0.CO;2-W. DOI

Atem ASA, et al. Luminescent point defect formation in 3C‐SiC by ion implantation. Phys. Status Solidi C. 2016;13:860–863. doi: 10.1002/pssc.201600139. DOI

International Atomic Energy Agency (IAEA) database of nuclear reactors. https://nucleus.iaea.org/RRDB/RR/ReactorSearch.aspx. Accessed 17 June 2017.

Rehor I, Cigler P. Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam. Relat. Mater. 2014;46:21–24. doi: 10.1016/j.diamond.2014.04.002. DOI

Agostinelli S, et al. Geant4—a simulation toolkit. Nuclear Instru. Methods Phy. Res. A. 2003;506:250–303. doi: 10.1016/S0168-9002(03)01368-8. DOI

Allison J, et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006;53:270–278. doi: 10.1109/TNS.2006.869826. DOI

Fortunato W, Chiquito AJ, Galzerani JC, Moro JR. Crystalline quality and phase purity of CVD diamond films studied by Raman spectroscopy. J. Mater. Sci. 2007;42:7331–7336. doi: 10.1007/s10853-007-1575-0. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Simultaneous label-free live imaging of cell nucleus and luminescent nanodiamonds

. 2020 Jun 17 ; 10 (1) : 9791. [epub] 20200617

Room-Temperature Defect Qubits in Ultrasmall Nanocrystals

. 2020 Mar 05 ; 11 (5) : 1675-1681. [epub] 20200214

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...