Optical imaging of localized chemical events using programmable diamond quantum nanosensors
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28317922
PubMed Central
PMC5364376
DOI
10.1038/ncomms14701
PII: ncomms14701
Knihovny.cz E-zdroje
- MeSH
- biosenzitivní techniky metody MeSH
- časové faktory MeSH
- koncentrace vodíkových iontů MeSH
- konfokální mikroskopie MeSH
- kvantová teorie MeSH
- nanodiamanty chemie ultrastruktura MeSH
- nanotechnologie metody MeSH
- optické zobrazování metody MeSH
- oxidace-redukce MeSH
- reprodukovatelnost výsledků MeSH
- transmisní elektronová mikroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nanodiamanty MeSH
Development of multifunctional nanoscale sensors working under physiological conditions enables monitoring of intracellular processes that are important for various biological and medical applications. By attaching paramagnetic gadolinium complexes to nanodiamonds (NDs) with nitrogen-vacancy (NV) centres through surface engineering, we developed a hybrid nanoscale sensor that can be adjusted to directly monitor physiological species through a proposed sensing scheme based on NV spin relaxometry. We adopt a single-step method to measure spin relaxation rates enabling time-dependent measurements on changes in pH or redox potential at a submicrometre-length scale in a microfluidic channel that mimics cellular environments. Our experimental data are reproduced by numerical simulations of the NV spin interaction with gadolinium complexes covering the NDs. Considering the versatile engineering options provided by polymer chemistry, the underlying mechanism can be expanded to detect a variety of physiologically relevant species and variables.
1st Faculty of Medicine Charles University Katerinska 32 121 08 Prague 2 Czech Republic
3 Physikalisches Institut Universität Stuttgart Pfaffenwaldring 57 70569 Stuttgart Germany
Zobrazit více v PubMed
Orrenius S., Zhivotovsky B. & Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552–565 (2003). PubMed
Winterbourn C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278–286 (2008). PubMed
Wu J. & Kaufman R. J. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ. 13, 374–384 (2006). PubMed
He L. & Hannon G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004). PubMed
Casey J. R., Grinstein S. & Orlowski J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010). PubMed
Schafer F. Q. & Buettner G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 1191–1212 (2001). PubMed
Domaille D. W., Que E. L. & Chang C. J. Synthetic fluorescent sensors for studying the cell biology of metals. Nat. Chem. Biol. 4, 168–175 (2008). PubMed
Howes P. D., Chandrawati R. & Stevens M. M. Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science 346, 1247390 (2014). PubMed
Zhang J., Campbell R. E., Ting A. Y. & Tsien R. Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002). PubMed
Schrand A. M. et al.. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B 111, 2–7 (2007). PubMed
Mochalin V. N., Shenderova O., Ho D. & Gogotsi Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012). PubMed
Zhu Y. et al.. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2, 302–312 (2012). PubMed PMC
Fang C. Y. et al.. The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. Small 7, 3363–3370 (2011). PubMed
Mohan N., Chen C. S., Hsieh H. H., Wu Y. C. & Chang H. C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010). PubMed
Balasubramanian G. et al.. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008). PubMed
Maze J. R. et al.. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008). PubMed
Gruber A. et al.. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).
Chow E. K. et al.. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011). PubMed
Kuo Y., Hsu T. Y., Wu Y. C. & Chang H. C. Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 34, 8352–8360 (2013). PubMed
Chu Z. et al.. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. Sci. Rep. 5, 11661 (2015). PubMed PMC
Zhang T. et al.. Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance. J. Biomed. Opt. 18, 26018 (2013). PubMed PMC
Chu Z. et al.. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci. Rep. 4, 4495 (2014). PubMed PMC
McGuinness L. P. et al.. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358–363 (2011). PubMed
Kucsko G. et al.. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013). PubMed PMC
Petrakova V. et al.. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. Nanoscale 8, 12002–12012 (2016). PubMed
Dolde F. et al.. Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011).
Neumann P. et al.. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13, 2738–2742 (2013). PubMed
Toyli D. M., Charles F., Christle D. J., Dobrovitski V. V. & Awschalom D. D. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013). PubMed PMC
Doherty M. W. et al.. Electronic properties and metrology applications of the diamond NV− center under pressure. Phys. Rev. Lett. 112, 047601 (2014). PubMed
Momenzadeh S. A. et al.. Thin circular diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems. Phys. Rev. Applied 6, 024026 (2016).
Neburkova J., Vavra J. & Cigler P. Coating nanodiamonds with biocompatible shells for applications in biology and medicine. Curr. Opin. Solid State Mater. Sci. 21, 43–53 (2017).
Slegerova J. et al.. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells. Nanoscale 7, 415–420 (2015). PubMed
Rehor I. et al.. Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. ChemPlusChem 79, 21–24 (2014). PubMed
Ermakova A. et al.. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 13, 3305–3309 (2013). PubMed
Steinert S. et al.. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 1607 (2013). PubMed
Kaufmann S. et al.. Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. Proc. Natl Acad. Sci. USA 110, 10894–10898 (2013). PubMed PMC
Sushkov A. O. et al.. All-optical sensing of a single-molecule electron spin. Nano Lett. 14, 6443–6448 (2014). PubMed
Rudovský J. et al.. Lanthanide(III) complexes of a mono(methylphosphonate) analogue of H4dota: the influence of protonation of the phosphonate moiety on the TSAP/SAP isomer ratio and the water exchange rate. Chemistry 11, 2373–2384 (2005). PubMed
Försterová M. et al.. Thermodynamic study of lanthanide(III) complexes with bifunctional monophosphinic acid analogues of H4dota and comparative kinetic study of yttrium (III) complexes. Dalton Trans. 535–549 (2007). PubMed
Kotková Z. et al.. Cyclodextrin-based bimodal fluorescence/MRI contrast agents: an efficient approach to cellular imaging. Chemistry 16, 10094–10102 (2010). PubMed
Havlik J. et al.. Benchtop fluorination of fluorescent nanodiamonds on a preparative scale: toward unusually hydrophilic bright particles. Adv. Funct. Mater. 26, 4134–4142 (2016).
Hrubý M., Koňák Č. & Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J. Control Release 103, 137–148 (2005). PubMed
Häberle T., Schmid-Lorch D., Reinhard F. & Wrachtrup J. Nanoscale nuclear magnetic imaging with chemical contrast. Nat. Nanotechnol. 10, 125–128 (2015). PubMed
Niemeyer I. et al.. Broadband excitation by chirped pulses: application to single electron spins in diamond. New J. Phys. 15, 033027 (2013).
Garwood M. & DelaBarre L. The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J. Magn. Reson. 153, 155–177 (2001). PubMed
Wu G., Fang Y.-Z., Yang S., Lupton J. R. & Turner N. D. Glutathione metabolism and its implications for health. J. Nutr. 134, 489–492 (2004). PubMed
Tetienne J.-P. et al.. Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing. Phys. Rev. B 87, 235436 (2013).
Ray A., Yoon H. K., Lee Y. E. K., Kopelman R. & Wang X. Sonophoric nanoprobe aided pH measurement in vivo using photoacoustic spectroscopy. Analyst 138, 3126–3130 (2013). PubMed PMC
Wencel D., Abel T. & McDonagh C. Optical chemical pH sensors. Anal. Chem. 86, 15–29 (2013). PubMed
Grant B. D. & Donaldson J. G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009). PubMed PMC
Lushchak V. I. Glutathione homeostasis and functions: potential targets for medical interventions. J. Amino Acids 2012, 736837 (2012). PubMed PMC
Howes P. D., Chandrawati R. & Stevens M. M. Colloidal nanoparticles as advanced biological sensors. Science 346, 1247390 (2014). PubMed
Jung H. S., Chen X., Kim J. S. & Yoon J. Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem. Soc. Rev. 42, 6019–6031 (2013). PubMed
Wang K., Peng H. & Wang B. Recent advances in thiol and sulfide reactive probes. J. Cell Biochem. 115, 1007–1022 (2014). PubMed
Vlasov I. I. et al.. Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9, 54–58 (2014). PubMed
Boudou J.-P. et al.. Fluorescent nanodiamonds derived from HPHT with a size of less than 10nm. Diam. Relat. Mater. 37, 80–86 (2013).
Stursa J. et al.. Mass production of fluorescent nanodiamonds with a narrow emission intensity distribution. Carbon 96, 812–818 (2016).
Rehor I. & Cigler P. Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam. Relat. Mater. 46, 21–24 (2014).