Nanodiamond-Quantum Sensors Reveal Temperature Variation Associated to Hippocampal Neurons Firing
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
20IND05QADeT
EMPIR program
European Union's Horizon 2020 research and innovation program
828946
PATHOS EU H2020 FET-OPEN
CZ.02.1.01/0.0/0.0/16_026/0008382
European Regional Development Fund
Compagnia di San Paolo
828946
PROGETTO TRAPEZIO
PubMed
35876403
PubMed Central
PMC9534962
DOI
10.1002/advs.202202014
Knihovny.cz E-zdroje
- Klíčová slova
- ODMR, intracellular nanoscale sensing, nanodiamonds, nitrogen-vacancy (NV) centers,
- MeSH
- dusík MeSH
- hipokampus MeSH
- nanodiamanty * MeSH
- neurony MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
- nanodiamanty * MeSH
Temperature is one of the most relevant parameters for the regulation of intracellular processes. Measuring localized subcellular temperature gradients is fundamental for a deeper understanding of cell function, such as the genesis of action potentials, and cell metabolism. Notwithstanding several proposed techniques, at the moment detection of temperature fluctuations at the subcellular level still represents an ongoing challenge. Here, for the first time, temperature variations (1 °C) associated with potentiation and inhibition of neuronal firing is detected, by exploiting a nanoscale thermometer based on optically detected magnetic resonance in nanodiamonds. The results demonstrate that nitrogen-vacancy centers in nanodiamonds provide a tool for assessing various levels of neuronal spiking activity, since they are suitable for monitoring different temperature variations, respectively, associated with the spontaneous firing of hippocampal neurons, the disinhibition of GABAergic transmission and the silencing of the network. Conjugated with the high sensitivity of this technique (in perspective sensitive to < 0.1 °C variations), nanodiamonds pave the way to a systematic study of the generation of localized temperature gradients under physiological and pathological conditions. Furthermore, they prompt further studies explaining in detail the physiological mechanism originating this effect.
Department of Drug and Science Technology University of Torino Corso Raffaello 30 Torino 10125 Italy
Istituto Nazionale di Fisica Nucleare Sez Torino via P Giuria 1 Torino 10125 Italy
Istituto Nazionale di Ricerca Metrologica Strada delle cacce 91 Torino 10135 Italy
NIS Inter departmental Centre via G Quarello 15 Torino 10135 Italy
Physics Department University of Torino via P Giuria 1 Torino 10125 Italy
Zobrazit více v PubMed
Robert C., Hue I., McGraw S., Gagné D., Sirard M. A., Quantification of Cyclin B1 and P34cdc2 in Bovine Cumulus‐Oocyte Complexes and Expression Mapping of Genes Involved in the Cell Cycle by Complementary DNA Macroarrays, Vol. 67, Sinauer Associates, Inc., Sunderland, MA, 2002, pp. 1456. PubMed
O'Leary T., Marder E., Curr. Biol. 2016, 26, 2935. PubMed PMC
Bui L., Glavinović M. I., Cogn. Neurodyn. 2014, 8, 277. PubMed PMC
Margineanu D. G., Schoffeniels E., Proc. Natl. Acad. Sci. USA 1977, 74, 3810. PubMed PMC
Howarth J. V., Ritchie J. M., Stagg D., Proc. R. Soc. London, Ser. B 1979, 205, 347. PubMed
De Lichtervelde A. C. L., De Souza J. P., Bazant M. Z., Phys. Rev. E 2020, 101, 22406. PubMed
Choi J., Zhou H., Landig R., Wu H. Y., Yu X., von Stetina S. E., Kucsko G., Mango S. E., Needleman D. J., Samuel A. D. T., Maurer P. C., Park H., Lukin M. D., Proc. Natl. Acad. Sci. USA 2020, 117, 14636. PubMed PMC
De Meis L., Ketzer L. A., Da Costa R. M., De Andrade I. R., Benchimol M., PLoS One 2010, 5, e9439. PubMed PMC
Thompson S. M., Masukawa L. M., Prince D. A., J. Neurosci. 1985, 5, 817. PubMed PMC
Volgushev M., Vidyasagar T. R., Chistiakova M., Eysel U. T., Neuroscience 2000, 98, 9. PubMed
Lee J. C. F., Callaway J. C., Foehring R. C., J. Neurophysiol. 2005, 93, 2012. PubMed
Raichle M. E., Proc. Natl. Acad. Sci. USA 1998, 95, 765. PubMed
Monti M., Brandt L., Ikomi‐Kumm J., Olsson H., Scand. J. Haematol. 1986, 36, 353. PubMed
Ghavami M., Rezaei M., Ejtehadi R., Lotfi M., Shokrgozar M. A., Abd Emamy B., Raush J., Mahmoudi M., ACS Chem. Neurosci. 2013, 4, 375. PubMed PMC
Liang P., Xu Y., Zhang X., Ding C., Huang R., Zhang Z., Lv J., Xie X., Chen Y., Li Y., Sun Y., Bai Y., Songyang Z., Ma W., Zhou C., Huang J., Protein Cell 2015, 6, 363. PubMed PMC
Fujiwara M., Sun S., Dohms A., Nishimura Y., Suto K., Takezawa Y., Oshimi K., Zhao L., Sadzak N., Umehara Y., Teki Y., Komatsu N., Benson O., Shikano Y., Kage‐Nakadai E., Sci. Adv. 2020, 6, eaba9636. PubMed PMC
Yang J.‐M., Yang H., Lin L., ACS Nano 2011, 5, 5067. PubMed
Kiyonaka S., Kajimoto T., Sakaguchi R., Shinmi D., Omatsu‐Kanbe M., Matsuura H., Imamura H., Yoshizaki T., Hamachi I., Morii T., Mori Y., Nat. Methods 2013, 10, 1232. PubMed
Chrétien D., Bénit P., Ha H. H., Keipert S., El‐Khoury R., Chang Y. T., Jastroch M., Jacobs H. T., Rustin P., Rak M., PLoS Biol. 2018, 16, e2003992. PubMed PMC
Baffou G., Rigneault H., Marguet D., Jullien L., Nat. Methods 2014, 11, 899. PubMed
Suzuki M., Zeeb V., Arai S., Oyama K., Ishiwata S., Nat. Methods 2015, 12, 802. PubMed
Suzuki M., Plakhotnik T., Biophys. Rev. 2020, 12, 593. PubMed PMC
Vetrone F., Naccache R., Zamarrón A., De La Fuente A. J., Sanz‐Rodríguez F., Maestro L. M., Rodriguez E. M., Jaque D., Sole J. G., Capobianco J. A., ACS Nano 2010, 4, 3254. PubMed
Li M., Chen T., Gooding J. J., Liu J., ACS Sens. 2019, 4, 1732. PubMed
Allison S. W., Gillies G. T., Rondinone A. J., Cates M. R., Nanotechnology 2003, 14, 859.
Guarina L., Calorio C., Gavello D., Moreva E., Traina P., Battiato A., Ditalia Tchernij S., Forneris J., Gai M., Picollo F., Olivero P., Genovese M., Carbone E., Marcantoni A., Carabelli V., Sci. Rep. 2018, 8, 2221. PubMed PMC
Petrini G., Moreva E., Bernardi E., Traina P., Tomagra G., Carabelli V., Degiovanni I. P., Genovese M., Adv. Quantum Technol. 2020, 3, 2000066.
Zhang T., Pramanik G., Zhang K., Gulka M., Wang L., Jing J., Xu F., Li Z., Wei Q., Cigler P., Chu Z., ACS Sens. 2021, 6, 2077. PubMed
Fujiwara M., Shikano Y., Nanotechnology 2021, 32, 482002. PubMed
Bradac C., Lim S. F., Chang H. C., Aharonovich I., Adv. Opt. Mater. 2020, 8, 2000183.
Fedotov I. V., Solotenkov M. A., Pochechuev M. S., Ivashkina O. I., Kilin S. Y., Anokhin K. V., Zheltikov A. M., ACS Photonics 2020, 7, 3353. PubMed
Tsai P. C., Epperla C. P., Huang J. S., Chen O. Y., Wu C. C., Chang H. C., Angew. Chem.,– Int. Ed. 2017, 56, 3025. PubMed
Liu W., Alam M. N. A., Liu Y., Agafonov V. N., Qi H., Koynov K., Davydov V. A., Uzbekov R., Kaiser U., Lasser T., Jelezko F., Ermakova A., Weil T., Nano Lett. 2022, 22, 2881. PubMed PMC
Ambal K., McMichael R. D., Rev. Sci. Instrum. 2019, 90, 023907. PubMed PMC
Wu Y., Weil T., Adv. Sci. 2022, 10.1002/advs.202200059. PubMed DOI PMC
Fujiwara M., Dohms A., Suto K., Nishimura Y., Oshimi K., Teki Y., Cai K., Benson O., Shikano Y., Phys. Rev. Res. 2020, 2, 043415. PubMed
Kucsko G., Maurer P. C., Yao N. Y., Kubo M., Noh H. J., Lo P. K., Park H., Lukin M. D., Nature 2013, 500, 54. PubMed PMC
Simpson D. A., Morrisroe E., McCoey J. M., Lombard A. H., Mendis D. C., Treussart F., Hall L. T., Petrou S., Hollenberg L. C. L., ACS Nano 2017, 11, 12077. PubMed
Tseeb V., Suzuki M., Oyama K., Iwai K., Ishiwata S., HFSP J. 2009, 3, 117. PubMed PMC
Singam S. K. R., Nesladek M., Goovaerts E., Nanotechnology 2020, 31, 105501. PubMed
Sasaki K., Monnai Y., Saijo S., Fujita R., Watanabe H., Ishi‐Hayase J., Itoh K. M., Abe E., Rev. Sci. Instrum. 2016, 87, 053904. PubMed
Huang Y. A., Kao C. W., Liu K. K., Huang H. S., Chiang M. H., Soo C. R., Chang H. C., Chiu T. W., Chao J. I., Hwang E., Sci. Rep. 2014, 4, 1. PubMed PMC
Papa M., Segal M., Neuroscience 1996, 71, 1005. PubMed
Marcantoni A., Cerullo M. S., Buxeda P., Tomagra G., Giustetto M., Chiantia G., Carabelli V., Carbone E., J. Physiol. 2020, 598, 2183. PubMed
Attwell D., Laughlin S. B., Cereb J., Blood Flow Metab. 2001, 21, 1133. PubMed
Leonard B. E., Hum. Psychopharmacol. Clin. Exp. 1993, 8, 294.
Gavello D., Calorio C., Franchino C., Cesano F., Carabelli V., Carbone E., Marcantoni A., Cereb. Cortex 2018, 28, 433. PubMed
Russo I., Gavello D., Menna E., Vandael D., Veglia C., Morello N., Corradini I., Focchi E., Alfieri A., Angelini C., Bianchi F. T., Morellato A., Marcantoni A., Sassoè‐Pognetto M., Ottaviani M. M., Yekhlef L., Giustetto M., Taverna S., Carabelli V., Matteoli M., Carbone E., Turco E., Defilippi P., Cereb. Cortex 2019, 29, 91. PubMed
Fujiwara N., Higashi H., Nishi S., Shimoji K., Sugita S., Yoshimura M., J. Physiol. 1988, 402, 155. PubMed PMC
Moreva E., Bernardi E., Traina P., Sosso A., Tchernij S. D., Forneris J., Picollo F., Brida G., Pastuović Z., Degiovanni I. P., Olivero P., Genovese M., Phys. Rev. Appl. 2020, 13, 054057.
Gatto Monticone D., Katamadze K., Traina P., Moreva E., Forneris J., Ruo‐Berchera I., Olivero P., Degiovanni I. P., Brida G., Genovese M., Phys. Rev. Lett. 2014, 113, 143602. PubMed
Smith S. M., Hum. Brain Mapp. 2002, 17, 143. PubMed PMC
Acosta V. M., Bauch E., Ledbetter M. P., Waxman A., Bouchard L. S., Budker D., Phys. Rev. Lett. 2010, 104, 070801. PubMed
Chen X. D., Dong C. H., Sun F. W., Zou C. L., Cui J. M., Han Z. F., Guo G. C., Appl. Phys. Lett. 2011, 99, 161903.
Kvakova K., Ondra M., Schimer J., Petrik M., Novy Z., Raabova H., Hajduch M., Cigler P., Adv. Funct. Mater. 2022, 32, 2109960.
Capelli M., Heffernan A. H., Ohshima T., Abe H., Jeske J., Hope A., Greentree A. D., Reineck P., Gibson B. C., Carbon 2019, 143, 714.
Rendler T., Neburkova J., Zemek O., Kotek J., Zappe A., Chu Z., Cigler P., Wrachtrup J., Nat. Commun. 2017, 8, 14701. PubMed PMC