Unambiguous observation of shape effects on cellular fate of nanoparticles
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24675513
PubMed Central
PMC3968459
DOI
10.1038/srep04495
PII: srep04495
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- buněčné linie MeSH
- intracelulární prostor metabolismus MeSH
- lidé MeSH
- nanočástice chemie metabolismus ultrastruktura MeSH
- povrchové vlastnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cellular fate of nanoparticles is vital to application of nanoparticles to cell imaging, bio-sensing, drug delivery, suppression of drug resistance, gene delivery, and cytotoxicity analysis. However, the current studies on cellular fate of nanoparticles have been controversial due to complications of interplay between many possible factors. By well-controlled experiments, we demonstrated unambiguously that the morphology of nanoparticles independently determined their cellular fate. We found that nanoparticles with sharp shapes, regardless of their surface chemistry, size, or composition, could pierce the membranes of endosomes that carried them into the cells and escape to the cytoplasm, which in turn significantly reduced the cellular excretion rate of the nanoparticles. Such features of sharp-shaped nanoparticles are essential for drug delivery, gene delivery, subcellular targeting, and long-term tracking. This work opens up a controllable, purely geometrical and hence safe, degree of freedom for manipulating nanoparticle-cell interaction, with numerous applications in medicine, bio-imaging, and bio-sensing.
Zobrazit více v PubMed
Wang X. et al. Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury. Nano Lett. 12, 3050–3061 (2012). PubMed PMC
Meng L. et al. Short Multiwall Carbon Nanotubes Promote Neuronal Differentiation of PC12 Cells via Up-Regulation of the Neurotrophin Signaling Pathway. Small 9, 1786–1798 (2013). PubMed
Meng H. et al. Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell Line. ACS Nano 4, 4539–4550 (2010). PubMed PMC
Zhang X. Q. et al. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv. Drug Deliv. Rev. 64, 1363–1384 (2012). PubMed PMC
Slowing I. I., Vivero-Escoto J. L., Wu C. W. & Lin V. S. Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008). PubMed
Panyam J. & Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 64, 61–71 (2012). PubMed
Fang C.-Y. et al. The Exocytosis of Fluorescent Nanodiamond and Its Use as a Long-Term Cell Tracker. Small 7, 3363–3370 (2011). PubMed
Vaijayanthimala V. et al. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33, 7794–7802 (2012). PubMed
McGuinness L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358–363 (2011). PubMed
Kucsko G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013). PubMed PMC
Sahay G., Alakhova D. Y. & Kabanov A. V. Endocytosis of nanomedicines. J. Control. Release 145, 182–195 (2010). PubMed PMC
Wieffer M., Maritzen T. & Haucke V. SnapShot: Endocytic Trafficking. Cell 137, 382.e1–382.e3 (2009). PubMed
Grant B. D. & Donaldson J. G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009). PubMed PMC
Zhao F. et al. Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small 7, 1322–1337 (2011). PubMed
Chithrani B. D. & Chan W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007). PubMed
Fader C. M. & Colombo M. I. Autophagy and multivesicular bodies: two closely related partners. Cell Death and Differ. 16, 70–78 (2009). PubMed
Khalil I. A., Kogure K., Akita H. & Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 58, 32–45 (2006). PubMed
Ghosh P. S., Kim C. K., Han G., Forbes N. S. & Rotello V. M. Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano 2, 2213–2218 (2008). PubMed PMC
Gilleron J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013). PubMed
Slowing I. I., Trewyn B. G. & Lin V. S. Y. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J. Am. Chem. Soc. 129, 8845–8849 (2007). PubMed
Wang L. et al. Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy. Nano Lett. 11, 772–780 (2011). PubMed
Li W. et al. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 19, 145102 (2008). PubMed
Lao F. et al. Fullerene Nanoparticles Selectively Enter Oxidation-Damaged Cerebral Microvessel Endothelial Cells and Inhibit JNK-Related Apoptosis. ACS Nano 3, 3358–3368 (2009). PubMed
Dobrovolskaia M. A. & McNeil S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007). PubMed
Vonarbourg A., Passirani C., Saulnier P. & Benoit J. P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27, 4356–4373 (2006). PubMed
Panyam J., Zhou W. Z., Prabha S., Sahoo S. K. & Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16, 1217–1225 (2002). PubMed
Guo S. et al. Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte. ACS Nano 4, 5505–5511 (2010). PubMed PMC
Ji Z. et al. Designed Synthesis of CeO2 Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano 6, 5366–5380 (2012). PubMed PMC
Tu Y. S. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8, 594–601 (2013). PubMed
Yanes R. E. et al. Involvement of Lysosomal Exocytosis in the Excretion of Mesoporous Silica Nanoparticles and Enhancement of the Drug Delivery Effect by Exocytosis Inhibition. Small 9, 697–704 (2013). PubMed PMC
Chung P. H., Perevedentseva E., Tu J. S., Chang C. C. & Cheng C. L. Spectroscopic study of bio-functionalized nanodiamonds. Diamond and Related Materials 15, 622–625 (2006).
Panyam J. & Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20, 212–220 (2003). PubMed
Suh J., Dawson M. & Hanes J. Real-time multiple-particle tracking: applications to drug and gene delivery. Adv. Drug Deliv. Rev. 57, 63–78 (2005). PubMed
Nan X. L., Sims P. A., Chen P. & Xie X. S. Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J. Phys. Chem. B 109, 24220–24224 (2005). PubMed
Chu Z., Huang Y., Tao Q. & Li Q. Cellular uptake, evolution, and excretion of silica nanoparticles in human cells. Nanoscale 3, 3291–3299 (2011). PubMed
Chu Z., Huang Y., Lib L., Tao Q. & Li Q. Physiological pathway of human cell damage induced by genotoxic crystalline silica nanoparticles. Biomaterials 33, 7540–7546 (2012). PubMed
Hentschel M. L. & Page N. W. Selection of descriptors for particle shape characterization. Part. Part. Syst. Char. 20, 25–38 (2003).
Ding H. M., Tian W. D. & Ma Y. Q. Designing Nanoparticle Translocation through Membranes by Computer Simulations. ACS Nano 6, 1230–1238 (2012). PubMed
Yang K. & Ma Y.-Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol. 5, 579–583 (2010). PubMed
van Meer G., Voelker D. R. & Feigenson G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008). PubMed PMC
McMahon H. T. & Gallop J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005). PubMed
Weng M.-F., Chang B.-J., Chiang S.-Y., Wang N.-S. & Niu H. Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds. Diamond and Related Materials 22, 96–104 (2012).
Havlik J. et al. Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5, 3208–3211 (2013). PubMed
Chang Y.-R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–288 (2008). PubMed
Rehor I. et al. Fluorescent Nanodiamonds Embedded in Biocompatible Translucent Shells. Small, 10.1002/smll.201302336 (2013). PubMed PMC
Rehor I. et al. Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. ChemPlusChem 79, 21–24 (2014). PubMed
Fu C. C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA. 104, 727–732 (2007). PubMed PMC
Rodriguez-Fernandez J., Perez-Juste J., Mulvaney P. & Liz-Marzan L. M. Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phys. Chem. B 109, 14257–14261 (2005). PubMed
Xiao M., Chen H., Ming T., Shao L. & Wang J. Plasmon-Modulated Light Scattering from Gold Nanocrystal-Decorated Hollow Mesoporous Silica Microspheres. ACS Nano 4, 6565–6572 (2010). PubMed
Why nanodiamond carriers manage to overcome drug resistance in cancer
Simultaneous label-free live imaging of cell nucleus and luminescent nanodiamonds
Anchored but not internalized: shape dependent endocytosis of nanodiamond
Optical imaging of localized chemical events using programmable diamond quantum nanosensors
Size and Purity Control of HPHT Nanodiamonds down to 1 nm