Unambiguous observation of shape effects on cellular fate of nanoparticles

. 2014 Mar 28 ; 4 () : 4495. [epub] 20140328

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24675513

Cellular fate of nanoparticles is vital to application of nanoparticles to cell imaging, bio-sensing, drug delivery, suppression of drug resistance, gene delivery, and cytotoxicity analysis. However, the current studies on cellular fate of nanoparticles have been controversial due to complications of interplay between many possible factors. By well-controlled experiments, we demonstrated unambiguously that the morphology of nanoparticles independently determined their cellular fate. We found that nanoparticles with sharp shapes, regardless of their surface chemistry, size, or composition, could pierce the membranes of endosomes that carried them into the cells and escape to the cytoplasm, which in turn significantly reduced the cellular excretion rate of the nanoparticles. Such features of sharp-shaped nanoparticles are essential for drug delivery, gene delivery, subcellular targeting, and long-term tracking. This work opens up a controllable, purely geometrical and hence safe, degree of freedom for manipulating nanoparticle-cell interaction, with numerous applications in medicine, bio-imaging, and bio-sensing.

Zobrazit více v PubMed

Wang X. et al. Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury. Nano Lett. 12, 3050–3061 (2012). PubMed PMC

Meng L. et al. Short Multiwall Carbon Nanotubes Promote Neuronal Differentiation of PC12 Cells via Up-Regulation of the Neurotrophin Signaling Pathway. Small 9, 1786–1798 (2013). PubMed

Meng H. et al. Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome Drug Resistance in a Cancer Cell Line. ACS Nano 4, 4539–4550 (2010). PubMed PMC

Zhang X. Q. et al. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv. Drug Deliv. Rev. 64, 1363–1384 (2012). PubMed PMC

Slowing I. I., Vivero-Escoto J. L., Wu C. W. & Lin V. S. Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008). PubMed

Panyam J. & Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 64, 61–71 (2012). PubMed

Fang C.-Y. et al. The Exocytosis of Fluorescent Nanodiamond and Its Use as a Long-Term Cell Tracker. Small 7, 3363–3370 (2011). PubMed

Vaijayanthimala V. et al. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33, 7794–7802 (2012). PubMed

McGuinness L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358–363 (2011). PubMed

Kucsko G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013). PubMed PMC

Sahay G., Alakhova D. Y. & Kabanov A. V. Endocytosis of nanomedicines. J. Control. Release 145, 182–195 (2010). PubMed PMC

Wieffer M., Maritzen T. & Haucke V. SnapShot: Endocytic Trafficking. Cell 137, 382.e1–382.e3 (2009). PubMed

Grant B. D. & Donaldson J. G. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10, 597–608 (2009). PubMed PMC

Zhao F. et al. Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small 7, 1322–1337 (2011). PubMed

Chithrani B. D. & Chan W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7, 1542–1550 (2007). PubMed

Fader C. M. & Colombo M. I. Autophagy and multivesicular bodies: two closely related partners. Cell Death and Differ. 16, 70–78 (2009). PubMed

Khalil I. A., Kogure K., Akita H. & Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 58, 32–45 (2006). PubMed

Ghosh P. S., Kim C. K., Han G., Forbes N. S. & Rotello V. M. Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano 2, 2213–2218 (2008). PubMed PMC

Gilleron J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013). PubMed

Slowing I. I., Trewyn B. G. & Lin V. S. Y. Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. J. Am. Chem. Soc. 129, 8845–8849 (2007). PubMed

Wang L. et al. Selective Targeting of Gold Nanorods at the Mitochondria of Cancer Cells: Implications for Cancer Therapy. Nano Lett. 11, 772–780 (2011). PubMed

Li W. et al. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 19, 145102 (2008). PubMed

Lao F. et al. Fullerene Nanoparticles Selectively Enter Oxidation-Damaged Cerebral Microvessel Endothelial Cells and Inhibit JNK-Related Apoptosis. ACS Nano 3, 3358–3368 (2009). PubMed

Dobrovolskaia M. A. & McNeil S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007). PubMed

Vonarbourg A., Passirani C., Saulnier P. & Benoit J. P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27, 4356–4373 (2006). PubMed

Panyam J., Zhou W. Z., Prabha S., Sahoo S. K. & Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16, 1217–1225 (2002). PubMed

Guo S. et al. Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte. ACS Nano 4, 5505–5511 (2010). PubMed PMC

Ji Z. et al. Designed Synthesis of CeO2 Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano 6, 5366–5380 (2012). PubMed PMC

Tu Y. S. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8, 594–601 (2013). PubMed

Yanes R. E. et al. Involvement of Lysosomal Exocytosis in the Excretion of Mesoporous Silica Nanoparticles and Enhancement of the Drug Delivery Effect by Exocytosis Inhibition. Small 9, 697–704 (2013). PubMed PMC

Chung P. H., Perevedentseva E., Tu J. S., Chang C. C. & Cheng C. L. Spectroscopic study of bio-functionalized nanodiamonds. Diamond and Related Materials 15, 622–625 (2006).

Panyam J. & Labhasetwar V. Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20, 212–220 (2003). PubMed

Suh J., Dawson M. & Hanes J. Real-time multiple-particle tracking: applications to drug and gene delivery. Adv. Drug Deliv. Rev. 57, 63–78 (2005). PubMed

Nan X. L., Sims P. A., Chen P. & Xie X. S. Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J. Phys. Chem. B 109, 24220–24224 (2005). PubMed

Chu Z., Huang Y., Tao Q. & Li Q. Cellular uptake, evolution, and excretion of silica nanoparticles in human cells. Nanoscale 3, 3291–3299 (2011). PubMed

Chu Z., Huang Y., Lib L., Tao Q. & Li Q. Physiological pathway of human cell damage induced by genotoxic crystalline silica nanoparticles. Biomaterials 33, 7540–7546 (2012). PubMed

Hentschel M. L. & Page N. W. Selection of descriptors for particle shape characterization. Part. Part. Syst. Char. 20, 25–38 (2003).

Ding H. M., Tian W. D. & Ma Y. Q. Designing Nanoparticle Translocation through Membranes by Computer Simulations. ACS Nano 6, 1230–1238 (2012). PubMed

Yang K. & Ma Y.-Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol. 5, 579–583 (2010). PubMed

van Meer G., Voelker D. R. & Feigenson G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008). PubMed PMC

McMahon H. T. & Gallop J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005). PubMed

Weng M.-F., Chang B.-J., Chiang S.-Y., Wang N.-S. & Niu H. Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds. Diamond and Related Materials 22, 96–104 (2012).

Havlik J. et al. Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5, 3208–3211 (2013). PubMed

Chang Y.-R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–288 (2008). PubMed

Rehor I. et al. Fluorescent Nanodiamonds Embedded in Biocompatible Translucent Shells. Small, 10.1002/smll.201302336 (2013). PubMed PMC

Rehor I. et al. Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. ChemPlusChem 79, 21–24 (2014). PubMed

Fu C. C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA. 104, 727–732 (2007). PubMed PMC

Rodriguez-Fernandez J., Perez-Juste J., Mulvaney P. & Liz-Marzan L. M. Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phys. Chem. B 109, 14257–14261 (2005). PubMed

Xiao M., Chen H., Ming T., Shao L. & Wang J. Plasmon-Modulated Light Scattering from Gold Nanocrystal-Decorated Hollow Mesoporous Silica Microspheres. ACS Nano 4, 6565–6572 (2010). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...