Why nanodiamond carriers manage to overcome drug resistance in cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35582214
PubMed Central
PMC8992557
DOI
10.20517/cdr.2020.52
Knihovny.cz E-zdroje
- Klíčová slova
- Nanodiamond, cancer therapy, drug carrier, drug resistance, nanoparticles,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanodiamonds represent an attractive potential carrier for anticancer drugs. The main advantages of nanodiamond particles with respect to medical applications are their high compatibility with non-cancerous cells, feasible surface decoration with therapeutic and cancer-cell targeting molecules, and their relatively low manufacturing cost. Additionally, nanodiamond carriers significantly increase treatment efficacy of the loaded drug, so anticancer drugs execute more effectively at a lower dose. Subsequently, lower drug dose results in less extensive side effects. The carriers decorated with a targeting molecule accumulate primarily in the tumor tissue, and those nanodiamond particles impair efflux of the drug from cancer cells. Therapeutic approaches considering nanodiamond carriers were already tested in vitro, as well as in vivo. Now, researchers focus particularly on the possible side effects of nanodiamond carriers applied systemically in vivo. The behavior of nanodiamond carriers depends heavily on their surface coatings, so each therapeutic complex must be evaluated separately. Generally, it seems that site-specific application of nanodiamond carriers is a rather safe therapeutic approach, but intravenous application needs further study. The benefits of nanodiamond carriers are remarkable and represent a potent approach to overcome the drug resistance of many cancers.
Center for Infrastructure Engineering Western Sydney University Penrith NSW 2751 Australia
Department of Mechanical Engineering Australian College of Kuwait Safat 13015 Kuwait
Institute of Microbiology Czech Academy of Sciences Prague 14220 Czech Republic
Zobrazit více v PubMed
Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther. 2019;34:20180032. doi: 10.1515/dmpt-2018-0032. PubMed DOI
Vladimis Y, Valerio V. Bringing again noble metal nanoparticles to the forefront of cancer therapy. Front Bioeng Biotechnol. 2018;6:143. doi: 10.3389/fbioe.2018.00143. PubMed DOI PMC
Marchesan S, Kostarelos K, Bianco A, Prato M. The winding road for carbon nanotubes in nanomedicine. Mat Today. 2015;18:12–9. doi: 10.1016/j.mattod.2014.07.009. DOI
Tsai LW, Lin YC, Perevedentseva E, Lugovtsov A, Priezzhev A, et al. Nanodiamonds for medical applications: interaction with blood in vitro and in vivo. Int J Mol Sci. 2016;17:1111. doi: 10.3390/ijms17071111. PubMed DOI PMC
Křivohlavá R, Neuhöferová E, Jakobsen KQ, Benson V. Knockdown of microRNA-135b in mammary carcinoma by targeted nanodiamonds: potentials and pitfalls of in vivo applications. Nanomaterials (Basel) 2019;9:866. doi: 10.3390/nano9060866. PubMed DOI PMC
Suarez-Kelly LP, Campbell AR, Rampersaud IV, Bumb A, Wang MS, et al. Fluorescent nanodiamonds engage innate immune effector cells: a potential vehicle for targeted anti-tumor immunotherapy. Nanomedicine. 2017;13:909–20. doi: 10.1016/j.nano.2016.12.005. PubMed DOI PMC
Barnard AS. Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst. 2009;134:1751–64. doi: 10.1039/b908532g. PubMed DOI
Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, et al. Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano. 2009;3:3955–62. doi: 10.1021/nn901014j. PubMed DOI
Hui YY, Cheng CL, Chang HC. Nanodiamonds for optical bioimaging. J Phys D Appl Phys. 2010;43:374021. doi: 10.1088/0022-3727/43/37/374021. DOI
Lukowski S, Neuhoferova E, Kinderman M, Krivohlava R, Mineva A, et al. Fluorescent nanodiamonds are efficient, easy-to-use cyto-compatible vehicles for monitored delivery of non-coding regulatory RNAs. J Biomed Nanotechnol. 2018;14:946–58. doi: 10.1166/jbn.2018.2540. PubMed DOI
McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT, et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol. 2011;6:358–63. doi: 10.1038/nnano.2011.64. PubMed DOI
Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2011;7:11–23. doi: 10.1038/nnano.2011.209. PubMed DOI
Petrakova V, Benson V, Buncek M, Fiserova A, Ledvina M, et al. Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. Nanoscale. 2016;8:12002–12. doi: 10.1039/c6nr00610h. PubMed DOI
Kaur R, Badea I. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. Int J Nanomedicine. 2013;8:203–20. doi: 10.2147/IJN.S37348. PubMed DOI PMC
Turcheniuk K, Mochalin VN. Biomedical applications of nanodiamond (Review). Nanotechnology. 2017;28:252001. doi: 10.1088/1361-6528/aa6ae4. PubMed DOI
Chang YR, Lee HY, Chen K, Chang CC, Tsai DS, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol. 2008;3:284–8. doi: 10.1038/nnano.2008.99. PubMed DOI
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 2008;3:703–17. doi: 10.2217/17435889.3.5.703. PubMed DOI PMC
Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63:136–51. doi: 10.1016/j.addr.2010.04.009. PubMed DOI
Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano. 2015;9:6655–74. doi: 10.1021/acsnano.5b01320. PubMed DOI PMC
Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010;10:3692–9. doi: 10.1021/nl1021909. PubMed DOI
Vaijayanthimala V, Cheng PY, Yeh SH, Liu KK, Hsiao CH, et al. The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials. 2012;33:7794–802. doi: 10.1016/j.biomaterials.2012.06.084. PubMed DOI
Zheng T, Perona Martínez F, Storm IM, Rombouts W, Sprakel J, et al. Recombinant protein polymers for colloidal stabilization and improvement of cellular uptake of diamond nanosensors. Anal Chem. 2017;89:12812–20. doi: 10.1021/acs.analchem.7b03236. PubMed DOI
Hemelaar SR, Nagl A, Bigot F, Rodríguez-García MM, de Vries MP, et al. The interaction of fluorescent nanodiamond probes with cellular media. Mikrochim Acta. 2017;184:1001–9. doi: 10.1007/s00604-017-2086-6. PubMed DOI PMC
Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012;1820:291–317. doi: 10.1016/j.bbagen.2011.07.016. PubMed DOI PMC
Chang LY, Osawa E, Barnard AS. Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale. 2011;3:958–62. doi: 10.1039/c0nr00883d. PubMed DOI
Chow EK. Implication of cancer stem cells in cancer drug development and drug delivery. J Lab Autom. 2013;18:6–11. doi: 10.1177/2211068212454739. PubMed DOI
Chu Z, Zhang S, Zhang B, Zhang C, Fang CY, et al. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Rep. 2014;4:4495. doi: 10.1038/srep04495. PubMed DOI PMC
Puzyr A, Baron A, Purtov K, Bortnikov E, Skobelev N, et al. Nanodiamonds with novel properties: a biological study. Diam Relat Mater. 2007;16:5. doi: 10.1016/j.diamond.2007.07.025. DOI
van der Laan K, Hasani M, Zheng T, Schirhagl R. Nanodiamonds for in vivo applications. Small. 2018;14:e1703838. doi: 10.1002/smll.201703838. PubMed DOI
Hsiao WW, Hui YY, Tsai PC, Chang HC. Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc Chem Res. 2016;49:400–7. doi: 10.1021/acs.accounts.5b00484. PubMed DOI
Gulka M, Salehi H, Varga B, Middendorp E, Pall O, et al. Simultaneous label-free live imaging of cell nucleus and luminescent nanodiamonds. Sci Rep. 2020;10:9791. doi: 10.1038/s41598-020-66593-7. PubMed DOI PMC
Gismondi A, Reina G, Orlanducci S, Mizzoni F, Gay S, et al. Nanodiamonds coupled with plant bioactive metabolites: a nanotech approach for cancer therapy. Biomaterials. 2015;38:22–35. doi: 10.1016/j.biomaterials.2014.10.057. PubMed DOI
Martín R, Alvaro M, Herance JR, García H. Fenton-treated functionalized diamond nanoparticles as gene delivery system. ACS Nano. 2010;4:65–74. doi: 10.1021/nn901616c. PubMed DOI
Chen M, Zhang XQ, Man HB, Lam R, Chow EK, et al. Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J Phys Chem Lett. 2010;1:3167–71. doi: 10.1021/jz1013278. DOI
Ho D, Wang CH, Chow EK. Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci Adv. 2015;1:e1500439. doi: 10.1126/sciadv.1500439. PubMed DOI PMC
Lee DK, Kee T, Liang Z, Hsiou D, Miya D, et al. Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proc Natl Acad Sci U S A. 2017;114:E9445–54. doi: 10.1073/pnas.1711924114. PubMed DOI PMC
Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27:2225–38. doi: 10.1021/acs.bioconjchem.6b00437. PubMed DOI PMC
Ramzy L, Nasr M, Metwally AA, Awad GAS. Cancer nanotheranostics: a review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci. 2017;104:273–92. doi: 10.1016/j.ejps.2017.04.005. PubMed DOI
Cersosimo RJ, Hong WK. Epirubicin: a review of the pharmacology, clinical activity, and adverse effects of an adriamycin analogue. J Clin Oncol. 1986;4:425–39. doi: 10.1200/JCO.1986.4.3.425. PubMed DOI
Chow EK, Zhang XQ, Chen M, Lam R, Robinson E, et al. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med. 2011;3:73ra21. doi: 10.1126/scitranslmed.3001713. PubMed DOI
Lin YW, Raj EN, Liao WS, Lin J, Liu KK, et al. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition. Sci Rep. 2017;7:9814. doi: 10.1038/s41598-017-09983-8. PubMed DOI PMC
Moore LK, Chow EK, Osawa E, Bishop JM, Ho D. Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv Mater. 2013;25:3532–41. doi: 10.1002/adma.201300343. PubMed DOI PMC
Wang X, Low XC, Hou W, Abdullah LN, Toh TB, et al. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano. 2014;8:12151–66. doi: 10.1021/nn503491e. PubMed DOI PMC
Yuan SJ, Xu YH, Wang C, An HC, Xu HZ, et al. Doxorubicin-polyglycerol-nanodiamond conjugate is a cytostatic agent that evades chemoresistance and reverses cancer-induced immunosuppression in triple-negative breast cancer. J Nanobiotechnology. 2019;17:110. doi: 10.1186/s12951-019-0541-8. PubMed DOI PMC
Huang H, Pierstorff E, Osawa E, Ho D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007;7:3305–14. doi: 10.1021/nl071521o. PubMed DOI
Lam R, Chen M, Pierstorff E, Huang H, Osawa E, et al. Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano. 2008;2:2095–102. doi: 10.1021/nn800465x. PubMed DOI
Zhang XQ, Lam R, Xu X, Chow EK, Kim HJ, et al. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv Mater. 2011;23:4770–5. doi: 10.1002/adma.201102263. PubMed DOI
Madamsetty VS, Sharma A, Toma M, Samaniego S, Gallud A, et al. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine. 2019;18:112–21. doi: 10.1016/j.nano.2019.02.020. PubMed DOI PMC
Hoang Thi TT, Pilkington EH, Nguyen DH, Lee JS, Park KD, et al. The importance of Poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers (Basel) 2020;12:298. doi: 10.3390/polym12020298. PubMed DOI PMC
Suliman S, Xing Z, Wu X, Xue Y, Pedersen TO, et al. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J Control Release. 2015;197:148–57. doi: 10.1016/j.jconrel.2014.11.003. PubMed DOI
Manus LM, Mastarone DJ, Waters EA, Zhang XQ, Schultz-Sikma EA, et al. Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 2010;10:484–9. doi: 10.1021/nl903264h. PubMed DOI PMC
Wu TJ, Tzeng YK, Chang WW, Cheng CA, Kuo Y, et al. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol. 2013;8:682–9. doi: 10.1038/nnano.2013.147. PubMed DOI PMC
Lyakhovich A, Lleonart ME. Bypassing mechanisms of mitochondria-mediated cancer stem cells resistance to chemo- and radiotherapy. Oxid Med Cell Longev. 2016;2016:1716341. doi: 10.1155/2016/1716341. PubMed DOI PMC
Li L, Bhatia R. Stem cell quiescence. Clin Cancer Res. 2011;17:4936–41. doi: 10.1158/1078-0432.CCR-10-1499. PubMed DOI PMC
Saha S, Adhikary A, Bhattacharyya P, Das T, Sa G. Death by design: where curcumin sensitizes drug-resistant tumours. Anticancer Res. 2012;32:2567–84. PubMed
Sotiropoulou PA, Christodoulou MS, Silvani A, Herold-Mende C, Passarella D. Chemical approaches to targeting drug resistance in cancer stem cells. Drug Discov Today. 2014;19:1547–62. doi: 10.1016/j.drudis.2014.05.002. PubMed DOI
Vinogradov S, Wei X. Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine (Lond) 2012;7:597–615. doi: 10.2217/nnm.12.22. PubMed DOI PMC
Hill C, Wang Y. The importance of epithelial-mesenchymal transition and autophagy in cancer drug resistance. Cancer Drug Resist. 2020;3:38–47. doi: 10.20517/cdr.2019.75. PubMed DOI PMC
Wang Y, Hays E, Rama M, Bonavida B. Cell-mediated immune resistance in cancer. Cancer Drug Resist. 2020;3:232–51. doi: 10.20517/cdr.2019.98. PubMed DOI PMC
Sun Z, Zhao Z, Li G, Dong S, Huang Z, et al. Relevance of two genes in the multidrug resistance of hepatocellular carcinoma: in vivo and clinical studies. Tumori. 2010;96:90–6. PubMed
Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in targeting cancer stem cells for cancer therapy. Front Pharmacol. 2017;8:1. doi: 10.3389/fphar.2017.00001. PubMed DOI PMC
Stupp R, Hegi ME. Targeting brain-tumor stem cells. Nat Biotechnol. 2007;25:193–4. doi: 10.1038/nbt0207-193. PubMed DOI
Hong IS, Jang GB, Lee HY, Nam JS. Targeting cancer stem cells by using the nanoparticles. Int J Nanomedicine. 2015;10:251–60. doi: 10.2147/IJN.S88310. PubMed DOI PMC
Ali MS, Metwally AA, Fahmy RH, Osman R. Nanodiamonds: minuscule gems that ferry antineoplastic drugs to resistant tumors. Int J Pharm. 2019;558:165–76. doi: 10.1016/j.ijpharm.2018.12.090. PubMed DOI
Chan MS, Liu LS, Leung HM, Lo PK. Cancer-cell-specific mitochondria-targeted drug delivery by dual-ligand-functionalized nanodiamonds circumvent drug resistance. ACS Appl Mater Interfaces. 2017;9:11780–9. doi: 10.1021/acsami.6b15954. PubMed DOI
Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001;19:1444–54. doi: 10.1200/JCO.2001.19.5.1444. PubMed DOI
Toh TB, Lee DK, Hou W, Abdullah LN, Nguyen J, et al. Nanodiamond-mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol Pharm. 2014;11:2683–91. doi: 10.1021/mp5001108. PubMed DOI PMC
Setyawati MI, Mochalin VN, Leong DT. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano. 2016;10:1170–81. doi: 10.1021/acsnano.5b06487. PubMed DOI
Hoo CM, Starostin N, West P, Mecartney ML. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res. 2008;10:89–96. doi: 10.1007/s11051-008-9435-7. DOI
Fiorillo M, Verre AF, Iliut M, Peiris-Pagés M, Ozsvari B, et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget. 2015;6:3553–62. doi: 10.18632/oncotarget.3348. PubMed DOI PMC
Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, et al. Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem. 2016;59:8149–67. doi: 10.1021/acs.jmedchem.5b01770. PubMed DOI
Burke AR, Singh RN, Carroll DL, Torti FM, Torti SV. Targeting cancer stem cells with nanoparticle-enabled therapies. J Mol Biomark Diagn. 2012 doi: 10.4172/2155-9929.S8-003. PubMed PMC
Yao HJ, Zhang YG, Sun L, Liu Y. The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials. 2014;35:9208–23. doi: 10.1016/j.biomaterials.2014.07.033. PubMed DOI
Man HB, Kim H, Kim HJ, Robinson E, Liu WK, et al. Synthesis of nanodiamond-daunorubicin conjugates to overcome multidrug chemoresistance in leukemia. Nanomedicine. 2014;10:359–69. doi: 10.1016/j.nano.2013.07.014. PubMed DOI PMC
Zhang Z, Niu B, Chen J, He X, Bao X, et al. The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials. 2014;35:4565–72. doi: 10.1016/j.biomaterials.2014.02.024. PubMed DOI
Du X, Li L, Wei S, Wang S, Li Y. A tumor-targeted, intracellular activatable and theranostic nanodiamond drug platform for strongly enhanced in vivo antitumor therapy. J Mater Chem B. 2020;8:1660. doi: 10.1039/c9tb02259g. PubMed DOI