Alarmins HMGB1, IL-33, S100A7, and S100A12 in Psoriasis Vulgaris
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
32377165
PubMed Central
PMC7180399
DOI
10.1155/2020/8465083
Knihovny.cz E-resources
- MeSH
- Alarmins blood MeSH
- Adult MeSH
- Interleukin-33 blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- HMGB1 Protein blood MeSH
- S100A12 Protein blood MeSH
- S100 Calcium Binding Protein A7 blood MeSH
- Psoriasis immunology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Severity of Illness Index MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Alarmins MeSH
- HMGB1 protein, human MeSH Browser
- IL33 protein, human MeSH Browser
- Interleukin-33 MeSH
- HMGB1 Protein MeSH
- S100A12 Protein MeSH
- S100 Calcium Binding Protein A7 MeSH
- S100A12 protein, human MeSH Browser
- S100A7 protein, human MeSH Browser
BACKGROUND: Psoriasis vulgaris is a chronic autoimmune disease associated with systemic inflammation. Increased levels of numerous cytokines, chemokines, growth factors, and other molecules were found in the skin and in the circulation of psoriatic patients. Alarmins, also known as danger signals, are intracellular proteins, which are released to an extracellular space after infection or damage. They are the markers of cell destructive processes. OBJECTIVE: The aim of the present study was to evaluate the suitability of selected alarmins (HMGB1, IL-33, S100A7, and S100A12) as potential biomarkers of severity of psoriasis and to explore possible relationships between these proteins for the purpose of better understanding their roles in the immunopathology of psoriasis. METHODS: The serum levels of selected alarmins were measured in 63 psoriatic patients and 95 control individuals. The levels were assessed by the ELISA technique using commercial kits. The data were statistically processed with MedCalc version 19.0.5. RESULTS: In psoriatic patients, we found significantly increased levels of HMGB1 (p < 0.05), IL-33 (p < 0.01), S100A7 (p < 0.0001), and S100A12 (p < 0.0001). In addition, we found a significant relationship between HMGB1 and S100A7 (Spearman's rho = 0.276, p < 0.05) in the patients and significant relationship between HMGB1 and IL-33 in the controls (Spearman's rho = 0.416, p < 0.05). We did not find any relationship between observed alarmins and the disease severity. CONCLUSIONS: The alarmins HMGB1, IL-33, S100A7, and S100A12 were significantly elevated in the serum of patients, which states the hypothesis that they play specific roles in the immunopathology of psoriasis. However, we have not yet found a relationship between observed alarmins and the disease severity. The discovery of the relationship between HMGB1 and S100A7 is a novelty that should be studied in the future to further clarify its role and importance.
See more in PubMed
Borska L., Kremlacek J., Andrys C., et al. Systemic inflammation, oxidative damage to nucleic acids, and metabolic syndrome in the pathogenesis of psoriasis. International Journal of Molecular Sciences. 2017;18(11):p. 2238. doi: 10.3390/ijms18112238. PubMed DOI PMC
Lebwohl M. G., Bachelez H., Barker J., et al. Patient perspectives in the management of psoriasis: results from the population-based Multinational Assessment of Psoriasis and Psoriatic Arthritis Survey. Journal of the American Academy of Dermatology. 2014;70(5):871–881.e30. doi: 10.1016/j.jaad.2013.12.018. PubMed DOI
Beranek M., Fiala Z., Kremlacek J., et al. Changes in circulating cell-free DNA and nucleosomes in patients with exacerbated psoriasis. Archives of Dermatological Research. 2017;309(10):815–821. doi: 10.1007/s00403-017-1785-5. PubMed DOI
Anderson K. S., Petersson S., Wong J., et al. Elevation of serum epidermal growth factor and interleukin 1 receptor antagonist in active psoriasis vulgaris. British Journal of Dermatology. 2010;163(5):1085–1089. doi: 10.1111/j.1365-2133.2010.09990.x. PubMed DOI
Nefla M., Holzinger D., Berenbaum F., Jacques C. The danger from within: alarmins in arthritis. Nature Reviews Rheumatology. 2016;12(11):669–683. doi: 10.1038/nrrheum.2016.162. PubMed DOI
Holzinger D., Tenbrock K., Roth J. Alarmins of the S100-family in juvenile autoimmune and auto-inflammatory diseases. Frontiers in Immunology. 2019;10:p. 182. doi: 10.3389/fimmu.2019.00182. PubMed DOI PMC
Bianchi M. E., Manfredi A. A. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunological Reviews. 2007;220:35–46. doi: 10.1111/j.1600-065X.2007.00574.x. PubMed DOI
Yang H. Alarmins and immunity. Immunological Reviews. 2017;280(1):41–56. doi: 10.1111/imr.12577. PubMed DOI PMC
Nie Y., Yang D., Oppenheim J. J. Alarmins and antitumor immunity. Clinical Therapeutics. 2016;38(5):1042–1053. doi: 10.1016/j.clinthera.2016.03.021. PubMed DOI PMC
Chan J. K., Roth J., Oppenheim J. J., et al. Alarmins: awaiting a clinical response. The Journal of Clinical Investigation. 2012;122(8):2711–2719. doi: 10.1172/JCI62423. PubMed DOI PMC
Venereau E., De Leo F., Mezzapelle R., Careccia G., Musco G., Bianchi M. E. HMGB1 as biomarker and drug target. Pharmacological Research. 2016;111:534–544. doi: 10.1016/j.phrs.2016.06.031. PubMed DOI
Gohar F., Anink J., Moncrieffe H., et al. S100A12 is associated with response to therapy in juvenile idiopathic arthritis. The Journal of Rheumatology. 2018;45(4):547–554. doi: 10.3899/jrheum.170438. PubMed DOI PMC
Saadah O. I., Al-Harthi S. E., Al-Mughales J. A., Bin-Taleb Y. Y., Baeshen R. S. Serum Interleukin-33 level in Saudi children with inflammatory bowel disease. International Journal of Clinical and Experimental Pathology. 2015;8(12):16000–16006. PubMed PMC
Dumitriu I. E., Baruah P., Manfredi A. A., Bianchi M. E., Rovere-Querini P. HMGB1: an immmune odyssey. Discovery Medicine. 2005;5(28):388–392. PubMed
Strohbuecker L., Koenen H., van Rijssen E., et al. Increased dermal expression of chromatin-associated protein HMGB1 and concomitant T-cell expression of the DNA RAGE in patients with psoriasis vulgaris. Psoriasis: Targets and Therapy. 2019;2019:7–17. doi: 10.2147/PTT.S190507. PubMed DOI PMC
Ye Y., Zeng Z., Jin T., Zhang H., Xiong X., Gu L. The role of high mobility group box 1 in ischemic stroke. Frontiers in Cellular Neuroscience. 2019;13:p. 127. doi: 10.3389/fncel.2019.00127. PubMed DOI PMC
Lu H., Zhang Z., Barnie P. A., Su Z. Dual faced HMGB1 plays multiple roles in cardiomyocyte senescence and cardiac inflammatory injury. Cytokine & Growth Factor Reviews. 2019;47:74–82. doi: 10.1016/j.cytogfr.2019.05.009. PubMed DOI
Sehat M., Talaei R., Dadgostar E., Nikoueinejad H., Akbari H. Evaluating serum levels of IL-33, IL-36, IL-37 and gene expression of IL-37 in patients with psoriasis vulgaris. Iranian Journal of Allergy, Asthma, and Immunology. 2018;17(2):179–187. PubMed
Lloyd C. M. IL-33 family members and asthma – bridging innate and adaptive immune responses. Current Opinion in Immunology. 2010;22(6):800–806. doi: 10.1016/j.coi.2010.10.006. PubMed DOI PMC
Vaccaro M., Cicero F., Mannucci C., et al. IL-33 circulating serum levels are increased in patients with non-segmental generalized vitiligo. Archives of Dermatological Research. 2016;308(7):527–530. doi: 10.1007/s00403-016-1675-2. PubMed DOI
Anderson K. S., Wong J., Polyak K., Aronzon D., Enerback C. Detection of psoriasin/S100A7 in the sera of patients with psoriasis. The British Journal of Dermatology. 2009;160(2):325–332. doi: 10.1111/j.1365-2133.2008.08904.x. PubMed DOI
Granata M., Skarmoutsou E., Mazzarino M. C., D'Amico F. S100A7 in psoriasis: immunodetection and activation by CRISPR technology. Methods in Molecular Biology. 1929;1929:729–738. doi: 10.1007/978-1-4939-9030-6_45. PubMed DOI
Son E. D., Kim H. J., Kim K. H., et al. S100A7 (psoriasin) inhibits human epidermal differentiation by enhanced IL-6 secretion through IκB/NF-κB signalling. Experimental Dermatology. 2016;25(8):636–641. doi: 10.1111/exd.13023. PubMed DOI
Ye L., Sun P. H., Martin T. A., Sanders A. J., Mason M. D., Jiang W. G. Psoriasin (S100A7) is a positive regulator of survival and invasion of prostate cancer cells. Urologic Oncology. 2013;31(8):1576–1583. doi: 10.1016/j.urolonc.2012.05.006. PubMed DOI
Foell D., Kane D., Bresnihan B., et al. Expression of the pro-inflammatory protein S100A12 (EN-RAGE) in rheumatoid and psoriatic arthritis. Rheumatology. 2003;42(11):1383–1389. doi: 10.1093/rheumatology/keg385. PubMed DOI
Wilsmann-Theis D., Wagenpfeil J., Holzinger D., et al. Among the S100 proteins, S100A12 is the most significant marker for psoriasis disease activity. Journal of the European Academy of Dermatology and Venereology. 2016;30(7):1165–1170. doi: 10.1111/jdv.13269. PubMed DOI
Malkic Salihbegovic E., Hadzigrahic N., Cickusic A. J. Psoriasis and metabolic syndrome. Medical Archives. 2015;69(2):85–87. doi: 10.5455/medarh.2015.69.85-87. PubMed DOI PMC
Bergmann C., Strohbuecker L., Lotfi R., et al. High mobility group box 1 is increased in the sera of psoriatic patients with disease progression. Journal of the European Academy of Dermatology and Venereology. 2016;30(3):435–441. doi: 10.1111/jdv.13564. PubMed DOI
Uzawa A., Mori M., Masuda S., Muto M., Kuwabara S. CSF high-mobility group box 1 is associated with intrathecal inflammation and astrocytic damage in neuromyelitis optica. Journal of Neurology, Neurosurgery, and Psychiatry. 2013;84(5):517–522. doi: 10.1136/jnnp-2012-304039. PubMed DOI
Zickert A., Palmblad K., Sundelin B., et al. Renal expression and serum levels of high mobility group box 1 protein in lupus nephritis. Arthritis Research & Therapy. 2012;14(1):p. R36. doi: 10.1186/ar3747. PubMed DOI PMC
Andersson U., Harris H. E. The role of HMGB1 in the pathogenesis of rheumatic disease. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2010;1799(1-2):141–148. doi: 10.1016/j.bbagrm.2009.11.003. PubMed DOI
Mitsui A., Tada Y., Takahashi T., et al. Serum IL-33 levels are increased in patients with psoriasis. Clinical and Experimental Dermatology. 2016;41(2):183–189. doi: 10.1111/ced.12670. PubMed DOI
Li J., Liu L., Rui W., et al. New interleukins in psoriasis and psoriatic arthritis patients: the possible roles of interleukin-33 to interleukin-38 in disease activities and bone erosions. Dermatology. 2017;233(1):37–46. doi: 10.1159/000471798. PubMed DOI
Han J. H., Suh C. H., Jung J. Y., et al. Serum levels of interleukin 33 and soluble ST2 are associated with the extent of disease activity and cutaneous manifestations in patients with active adult-onset Still's disease. The Journal of Rheumatology. 2017;44(6):740–747. doi: 10.3899/jrheum.170020. PubMed DOI
Tamagawa-Mineoka R., Okuzawa Y., Masuda K., Katoh N. Increased serum levels of interleukin 33 in patients with atopic dermatitis. Journal of the American Academy of Dermatology. 2014;70(5):882–888. doi: 10.1016/j.jaad.2014.01.867. PubMed DOI
Gambichler T., Bechara F. G., Scola N., Rotterdam S., Altmeyer P., Skrygan M. Serum levels of antimicrobial peptides and proteins do not correlate with psoriasis severity and are increased after treatment with fumaric acid esters. Archives of Dermatological Research. 2012;304(6):471–474. doi: 10.1007/s00403-012-1227-3. PubMed DOI
Batycka-Baran A., Maj J., Wolf R., Szepietowski J. C. The new insight into the role of antimicrobial proteins-alarmins in the immunopathogenesis of psoriasis. Journal of Immunology Research. 2014;2014:10. doi: 10.1155/2014/628289.628289 PubMed DOI PMC
Hegyi Z., Zwicker S., Bureik D., et al. Vitamin D analog calcipotriol suppresses the Th17 cytokine-induced proinflammatory S100 "alarmins" psoriasin (S100A7) and koebnerisin (S100A15) in psoriasis. The Journal of Investigative Dermatology. 2012;132(5):1416–1424. doi: 10.1038/jid.2011.486. PubMed DOI
Shubbar E., Vegfors J., Carlstrom M., Petersson S., Enerback C. Psoriasin (S100A7) increases the expression of ROS and VEGF and acts through RAGE to promote endothelial cell proliferation. Breast Cancer Research and Treatment. 2012;134(1):71–80. doi: 10.1007/s10549-011-1920-5. PubMed DOI
Salama R. H., Al-Shobaili H. A., Al Robaee A. A., Alzolibani A. A. Psoriasin: a novel marker linked obesity with psoriasis. Disease Markers. 2013;34(1):33–39. doi: 10.3233/DMA-2012-120945. PubMed DOI PMC
Awad S. M., Attallah D. A., Salama R. H., Mahran A. M., Abu E.-H. E. Serum levels of psoriasin (S100A7) and koebnerisin (S100A15) as potential markers of atherosclerosis in patients with psoriasis. Clinical and Experimental Dermatology. 2018;43(3):262–267. doi: 10.1111/ced.13370. PubMed DOI
Takahashi T., Asano Y., Yamashita T., et al. A potential contribution of psoriasin to vascular and epithelial abnormalities and inflammation in systemic sclerosis. Journal of the European Academy of Dermatology and Venereology. 2018;32(2):291–297. doi: 10.1111/jdv.14459. PubMed DOI
Uysal S., Yilmaz F. M., Karatoprak K., Artuz F., Cumbul N. U. The levels of serum pentraxin3, CRP, fetuin-A, and insulin in patients with psoriasis. European Review for Medical and Pharmacological Sciences. 2014;18(22):3453–3458. PubMed
Kondelkova K., Borska L., Andrys C., et al. Selected inflammatory and metabolic markers in psoriatic patients treated with goeckerman therapy. Mediators of Inflammation. 2015;2015:8. doi: 10.1155/2015/979526.979526 PubMed DOI PMC