The Effective Charge of Low-Fouling Polybetaine Brushes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40491024
PubMed Central
PMC12199473
DOI
10.1021/acs.langmuir.5c00759
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Polybetaine nanobrushes are widely used as inert platforms for label-free biosensing due to their resistance to nonspecific interactions. Despite being considered cationic or electrically neutral, polybetaines can exhibit a negative zeta potential (ZP) at pHs above their isoelectric point (pI). To clarify whether negative zeta potential effectively contributes to surface interactions, we examined three types of nanobrushes deposited on a planar gold substrate: two polybetaines: poly(carboxybetaine methacrylamide) (pCBMAA) and poly(sulfobetaine methacrylamide) (pSBMAA) and hydrophilic poly[N-(2-hydroxypropyl) methacrylamide] (pHPMAA), which carries no ionic group. All three brushes exhibit a well-defined pI and negative surface ZP at pHs above their pI. The pH dependence of the interactions of these brushes with anionic dextran sulfate (DS) and cationic poly[(N-trimethylammonium)ethyl methacrylate] (PTMAEMA) was monitored by infrared reflection spectroscopies (infrared reflection absorption spectroscopy (IRRAS), grazing angle attenuated total reflectance (GAATR)). DS adsorbs to pCBMAA strongly and only weakly to pSBMAA at pHs below their pI but can adsorb slightly to both polybetaines even at pHs above their pI. This is due to the displacement of their carboxylate or sulfo groups from the interaction with the quaternary ammonium cation by the DS sulfate groups. However, DS does not adsorb to pHPMAA at any pH, and PTMAEMA does not adsorb to any of the brushes, regardless of pH. These findings highlight that zeta potential determinations alone may not be sufficient to predict electrostatic interactions as the apparent negative charge does not necessarily translate into a functional surface charge influencing macromolecular interactions.
Zobrazit více v PubMed
Qu K., Yuan Z., Wang Y., Song Z., Gong X., Zhao Y., Mu Q., Zhan Q., Xu W., Wang L.. Structures, Properties, and Applications of Zwitterionic Polymers. Chem. Phys. Mater. 2022;1(4):294–309. doi: 10.1016/j.chphma.2022.04.003. DOI
Schlenoff J. B.. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir. 2014;30(32):9625–9636. doi: 10.1021/la500057j. PubMed DOI PMC
Schimmel T., Bohrisch J., Anghel D. F., Oberdisse J., von Klitzing R.. Influence of Intramolecular Charge Coupling on Intermolecular Interactions of Polycarboxybetaines in Aqueous Solution and in Polyelectrolyte Multilayers. Mol. Phys. 2021;119(15–16):e1936676. doi: 10.1080/00268976.2021.1936676. DOI
Guo S., Jańczewski D., Zhu X., Quintana R., He T., Neoh K. G.. Surface charge control for zwitterionic polymer brushes: Tailoring Surface Properties to Antifouling Applications. J. Colloid Interface Sci. 2015;452:43–53. doi: 10.1016/j.jcis.2015.04.013. PubMed DOI
Kelleppan V. T., King J. P., Butler C. S. G., Williams A. P., Tuck K. L., Tabor R. F.. Heads or Tails? The Synthesis, Self-Assembly, Properties and Uses of Betaine and Betaine-Like Surfactants. Adv. Colloid Interface Sci. 2021;297:102528. doi: 10.1016/j.cis.2021.102528. PubMed DOI
Kharlampieva E., Izumrudov V. A., Sukhishvili S. A.. Electrostatic Layer-by-Layer Self-Assembly of Poly(carboxybetaine)s: Role of Zwitterions in Film Growth. Macromolecules. 2007;40(10):3663–3668. doi: 10.1021/ma062811e. DOI
Abraham S., So A., Unsworth L. D.. Poly(Carboxybetaine Methacrylamide)-Modified Nanoparticles: A Model System for Studying the Effect of Chain Chemistry on Film Properties, Adsorbed Protein Conformation, and Clot Formation Kinetics. Biomacromolecules. 2011;12(10):3567–3580. doi: 10.1021/bm200778u. PubMed DOI
Izumrudov V. A., Domashenko N. I., Zhiryakova M. V., Davydova O. V.. Interpolyelectrolyte Reactions in Solutions of Polycarboxybetaines, 2: Influence of Alkyl Spacer in the Betaine Moieties on Complexing with Polyanions. J. Phys. Chem. B. 2005;109(37):17391–17399. doi: 10.1021/jp0518207. PubMed DOI
Ramireddy R. R., Prasad P., Finne A., Thayumanavan S.. Zwitterionic Amphiphilic Homopolymer Assemblies. Polym. Chem. 2015;6(33):6083–6087. doi: 10.1039/C5PY00879D. PubMed DOI PMC
Vaisocherova-Lisalova H., Visova I., Ermini M. L., Springer T., Song X. C., Mrazek J., Lamacova J., Scott Lynn N. Jr., Sedivak P., Homola J.. Low-Fouling Surface Plasmon Resonance Biosensor for Multi-Step Detection of Foodborne Bacterial Pathogens in Complex Food Samples. Biosens. Bioelectron. 2016;80:84–90. doi: 10.1016/j.bios.2016.01.040. PubMed DOI
van Andel E., de Bus I., Tijhaar E. J., Smulders M. M. J., Savelkoul H. F. J., Zuilhof H.. Highly Specific Binding on Antifouling Zwitterionic Polymer-Coated Microbeads as Measured by Flow Cytometry. ACS Appl. Mater. Interfaces. 2017;9(44):38211–38221. doi: 10.1021/acsami.7b09725. PubMed DOI PMC
Jiang C., Wang G., Hein R., Liu N., Luo X., Davis J. J.. Antifouling strategies for selective In Vitro and In Vivo Sensing. Chem. Rev. 2020;120:3852–3889. doi: 10.1021/acs.chemrev.9b00739. PubMed DOI
Jiang S., Cao Z.. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv. Mater. 2010;22(9):920–932. doi: 10.1002/adma.200901407. PubMed DOI
Racovita S., Trofin M.-A., Loghin D. F., Zaharia M.-M., Bucatariu F., Mihai M., Vasiliu S.. Polybetaines in Biomedical Applications. Int. J. Mol. Sci. 2021;22:9321. doi: 10.3390/ijms22179321. PubMed DOI PMC
Yu Y., Brió Pérez M., Cao C., de Beer S.. Switching (Bio-) Adhesion and Friction in Liquid by Stimulus Responsive Polymer Coatings. Eur. Polym. J. 2021;147:110298. doi: 10.1016/j.eurpolymj.2021.110298. DOI
He W., Wen J., Hu Q., Yi Y., Wei Z., Yang X., Zhai G., Li F., Ye L.. The Advances in Zwitterionic Materials and Their Biomedical Applications. Int. Mater. Rev. 2025;70(4):301–349. doi: 10.1177/09506608251323568. DOI
Cao Z., Yu Q., Xue H., Cheng G., Jiang S.. Nanoparticles for Drug Delivery Prepared from Amphiphilic PLGA Zwitterionic Block Copolymers with Sharp Contrast in Polarity between Two Blocks. Angew. Chem., Int. Ed. 2010;49(22):3771–3776. doi: 10.1002/anie.200907079. PubMed DOI
Li D., Xu L., Wang J., Gautrot J. E.. Responsive Polymer Brush Design and Emerging Applications for Nanotheranostics. Adv. Healthcare Mater. 2021;10(5):2000953. doi: 10.1002/adhm.202000953. PubMed DOI PMC
Davenport D. M., Lee J., Elimelech M.. Efficacy of Antifouling Modification of Ultrafiltration Membranes by Grafting Zwitterionic Polymer Brushes. Sep. Purif. Technol. 2017;189:389–398. doi: 10.1016/j.seppur.2017.08.034. DOI
Pester C. W., Klok H.-A., Benetti E. M.. Opportunities, Challenges, and Pitfalls in Making, Characterizing, and Understanding Polymer Brushes. Macromolecules. 2023;56(24):9915–9938. doi: 10.1021/acs.macromol.3c01292. DOI
Murad Bhayo A., Yang Y., He X.. Polymer brushes: Synthesis, Characterization, Properties and Applications. Prog. Mater. Sci. 2022;130:101000. doi: 10.1016/j.pmatsci.2022.101000. DOI
Wang R., Wei Q., Sheng W., Yu B., Zhou F., Li B.. Driving Polymer Brushes from Synthesis to Functioning. Angew. Chem., Int. Ed. 2023;62(27):e202219312. doi: 10.1002/anie.202219312. PubMed DOI
Tang Y., Liu Y., Zhang D., Zheng J.. Perspectives on Theoretical Models and Molecular Simulations of Polymer Brushes. Langmuir. 2024;40(2):1487–1502. doi: 10.1021/acs.langmuir.3c03253. PubMed DOI
Zhang Y., Liu Y., Ren B., Zhang D., Xie S., Chang Y., Yang J., Wu J., Xu L., Zheng J.. Fundamentals and Applications of Zwitterionic Antifouling Polymers. J. Phys. D: Appl. Phys. 2019;52(40):403001. doi: 10.1088/1361-6463/ab2cbc. DOI
Anthi J., Kolivoska V., Holubová B., Vaisocherová-Lísalová H.. Probing Polymer Brushes with Electrochemical Impedance Spectroscopy: A Mini Review. Biomater. Sci. 2021;9(22):7379–7391. doi: 10.1039/D1BM01330K. PubMed DOI
Vaisocherova H., Yang W., Zhang Z., Cao Z., Cheng G., Piliarik M., Homola J., Jiang S.. Ultralow Fouling and Functionalizable Surface Chemistry Based on a Zwitterionic Polymer Enabling Sensitive and Specific Protein Detection in Undiluted Blood Plasma. Anal. Chem. 2008;80(20):7894–7901. doi: 10.1021/ac8015888. PubMed DOI
Visova I., Houska M., Vaisocherova-Lisalova H.. Biorecognition Antifouling Coatings in Complex Biological Fluids: A Review of Functionalization Aspects. Analyst. 2022;147(12):2597–2614. doi: 10.1039/D2AN00436D. PubMed DOI
Blaszykowski C., Sheikh S., Thompson M.. A Survey of State-Of-The-Art Surface Chemistries to Minimize Fouling From Human and Animal Biofluids. Biomater. Sci. 2015;3(10):1335–1370. doi: 10.1039/C5BM00085H. PubMed DOI
Víšová I., Houska M., Spasovová M., Forinová M., Pilipenco A., Mezuláníková K., Tomandlová M., Mrkvová K., Vrabcová M., Dejneka A.. et al. Tuning of Surface Charge of Functionalized Poly(Carboxybetaine) Brushes Can Significantly Improve Label-Free Biosensing in Complex Media. Adv. Mater. Interfaces. 2022;9(33):2201210. doi: 10.1002/admi.202201210. DOI
Lísalová H., Brynda E., Houska M., Víšová I., Mrkvová K., Song X. C., Gedeonová E., Surman F., Riedel T., Pop-Georgievski O.. et al. Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters. Anal. Chem. 2017;89(6):3524–3531. doi: 10.1021/acs.analchem.6b04731. PubMed DOI
Forinová M., Pilipenco A., Víšová I., Lynn N. S., Dostálek J., Mašková H., Hönig V., Palus M., Selinger M., Kočová P.. et al. Functionalized Terpolymer-Brush-Based Biointerface with Improved Antifouling Properties for Ultra-Sensitive Direct Detection of Virus in Crude Clinical Samples. ACS Appl. Mater. Interfaces. 2021;13(50):60612–60624. doi: 10.1021/acsami.1c16930. PubMed DOI
Huang C. J., Brault N. D., Li Y. T., Yu Q. M., Jiang S. Y.. Controlled Hierarchical Architecture in Surface-initiated Zwitterionic Polymer Brushes with Structurally Regulated Functionalities. Adv. Mater. 2012;24(14):1834–1837. doi: 10.1002/adma.201104849. PubMed DOI
Sun F., Hung H. C., Sinclair A., Zhang P., Bai T., Galvan D. D., Jain P., Li B. W., Jiang S. Y., Yu Q. M.. Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma. Nat. Commun. 2016;7:13437. doi: 10.1038/ncomms13437. PubMed DOI PMC
Zhang Z., Vaisocherová H., Cheng G., Yang W., Xue H., Jiang S.. Nonfouling Behavior of Polycarboxybetaine-Grafted Surfaces: Structural and Environmental Effects. Biomacromolecules. 2008;9(10):2686–2692. doi: 10.1021/bm800407r. PubMed DOI
Tang Y., Wei J., Liu Y., Chang Y., Zheng J.. Machine Learning Aided Design and Optimization of Antifouling Surfaces. Langmuir. 2024;40(43):22504–22515. doi: 10.1021/acs.langmuir.4c03553. PubMed DOI
Vrabcová M., Spasovová M., Houska M., Mrkvová K., Lynn N. S. Jr., Fekete L., Romanyuk O., Dejneka A., Vaisocherová-Lísalová H.. Long-Term Stability of Antifouling Poly(Carboxybetaine Acrylamide) Brush Coatings. Prog. Org. Coat. 2024;188:108187. doi: 10.1016/j.porgcoat.2023.108187. DOI
Forinová M., Pilipenco A., Lynn N. S., Obořilová R., Šimečková H., Vrabcová M., Spasovová M., Jack R., Horák P., Houska M.. et al. A reusable QCM Biosensor with Stable Antifouling Nano-Coating for On-Site Reagent-Free Rapid Detection of E. coli O157:H7 in Food Products. Food Control. 2024;165:110695. doi: 10.1016/j.foodcont.2024.110695. DOI
Víšová I., Vrabcová M., Forinová M., Zhigunová Y., Mironov V., Houska M., Bittrich E., Eichhorn K.-J., Hashim H., Schovánek P.. et al. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes. Langmuir. 2020;36(29):8485–8493. doi: 10.1021/acs.langmuir.0c00996. PubMed DOI
Kolská, Z. ; Makajová, Z. ; Kolářová, K. ; Slepičková, N. K. ; Trostová, S. ; Řezníčková, A. ; Siegel, J. ; Švorčík, V. . Electrokinetic Potential and Other Surface Properties of Polymer Foils and Their Modifications. Polymer Science; InTech, 2013; 203–228. 10.5772/46144. DOI
Karthäuser J. F., Koc J., Schönemann E., Wanka R., Aldred N., Clare A. S., Rosenhahn A., Laschewsky A.. Optimizing Fouling Resistance of Poly(Sulfabetaine)s through Backbone and Charge Separation. Adv. Mater. Interfaces. 2022;9(33):2200677. doi: 10.1002/admi.202200677. DOI
Houska M., Brynda E.. Interactions of Proteins with Polyelectrolytes at Solid/Liquid Interfaces: Sequential Adsorption of Albumin and Heparin. J. Colloid Interface Sci. 1997;188(2):243–250. doi: 10.1006/jcis.1996.4576. DOI
Brynda, E. ; Houska, M. . Ordered multilayer assemblies: Albumin/Heparin for Biocompatible Coatings and Monoclonal Antibodies for Optical Immunosensors. In Protein Architecture: Interfacial Molecular Assembly and Immobilization Biotechnology; Marcel Dekker, 2000; pp 251–286.
Černochová Z., Bogomolova A., Borisova O. V., Filippov S. K., Černoch P., Billon L., Borisov O. V., Štěpánek P.. Thermodynamics of the Multi-Stage Self-Assembly of pH-Sensitive Gradient Copolymers in Aqueous Solutions. Soft Matter. 2016;12(32):6788–6798. doi: 10.1039/C6SM01105E. PubMed DOI
Černochová Z., Lobaz V., Čtveráčková L., Černoch P., Šlouf M., Filipová M., Hrubý M., Pánek J.. Encapsulating Melittin from Animal Venom By Finely Tuned Charge Compensation with Polymer Carriers. Eur. Polym. J. 2023;190:111996. doi: 10.1016/j.eurpolymj.2023.111996. DOI
Smoluchowski, M. v. Handbuch der Elektrizität und des Magnetismus. Band II; Barth-Verlag, 1921; pp 366–427.
Vrabcová M., Spasovová M., Cirik V., Anthi J., Pilipenco A., Houska M., Romanyuk O., Vaisocherová-Lísalová H., Scott Lynn N.. Microfluidic Stack Reactors For The Mass Synthesis of Polymer Brushes. Chem. Eng. J. 2025;508:160914. doi: 10.1016/j.cej.2025.160914. DOI
Vrabcová, M. ; Houska, M. ; Spasovová, M. ; Forinova, M. ; Pilipenco, A. ; Matoušova Visova, I. ; Mrkvova, K. ; Vaisocherová-Lísalová, H. . Effects Of Storage On Stability And Performance Of Carboxybetaine-Based Polymer Brushes. In Proc. SPIE, 2024; Vol. 12999; p 129990.
Zhang Y., Lv B., Lu Z., He J., Zhang S., Chen H., Ma H.. Predicting Au–S bond breakage from the swelling behavior of surface tethered polyelectrolytes. Soft Matter. 2011;7(24):11496–11500. doi: 10.1039/c1sm05895a. DOI
Lv B., Zhou Y., Cha W., Wu Y., Hu J., Li L., Chi L., Ma H.. Molecular Composition, Grafting Density and Film Area Affect the Swelling-Induced Au-S Bond Breakage. ACS Appl. Mater. Interfaces. 2014;6(11):8313–8319. doi: 10.1021/am501150m. PubMed DOI
Harrick Scientific Products, Inc. VariGATR Grazing Angle Accessory. https://harricksci.com/content/Data_Sheet_VariGATR.pdf (accessed Jan 28, 2025).