Anchored but not internalized: shape dependent endocytosis of nanodiamond

. 2017 Apr 13 ; 7 () : 46462. [epub] 20170413

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28406172

Nanoparticle-cell interactions begin with the cellular uptake of the nanoparticles, a process that eventually determines their cellular fate. In the present work, we show that the morphological features of nanodiamonds (NDs) affect both the anchoring and internalization stages of their endocytosis. While a prickly ND (with sharp edges/corners) has no trouble of anchoring onto the plasma membrane, it suffers from difficult internalization afterwards. In comparison, the internalization of a round ND (obtained by selective etching of the prickly ND) is not limited by its lower anchoring amount and presents a much higher endocytosis amount. Molecular dynamics simulation and continuum modelling results suggest that the observed difference in the anchoring of round and prickly NDs likely results from the reduced contact surface area with the cell membrane of the former, while the energy penalty associated with membrane curvature generation, which is lower for a round ND, may explain its higher probability of the subsequent internalization.

Zobrazit více v PubMed

Canton I. & Battaglia G. Endocytosis at the nanoscale. Chem. Soc. Rev. 41, 2718–2739 (2012). PubMed

Albanese A., Tang P. S. & Chan W. C. W. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012). PubMed

Duan X. & Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9, 1521–1532 (2013). PubMed

Vácha R., Martinez-Veracoechea F. J. & Frenkel D. Receptor-Mediated Endocytosis of Nanoparticles of Various Shapes. Nano Lett. 11, 5391–5395 (2011). PubMed

Nel A. E. et al.. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009). PubMed

Verma A. & Stellacci F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small 6, 12–21 (2010). PubMed

Monopoli M. P., Åberg C., Salvati A. & Dawson K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012). PubMed

Champion J. A. & Mitragotri S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 103, 4930–4934 (2006). PubMed PMC

Bahrami A. H. Orientational changes and impaired internalization of ellipsoidal nanoparticles by vesicle membranes. Soft Matter 9, 8642–8646 (2013).

Qiu Y. et al.. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31, 7606–7619 (2010). PubMed

Sharma G. et al.. Polymer particle shape independently influences binding and internalization by macrophages. J. Controlled Release 147, 408–412 (2010). PubMed PMC

Barua S. et al.. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl. Acad. Sci. 110, 3270–3275 (2013). PubMed PMC

Zhang X.-Q. et al.. Multimodal Nanodiamond Drug Delivery Carriers for Selective Targeting, Imaging, and Enhanced Chemotherapeutic Efficacy. Adv. Mater. 23, 4770–4775 (2011). PubMed

Chow E. K. et al.. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011). PubMed

McGuinness L. P. et al.. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358–363 (2011). PubMed

Tzeng Y.-K. et al.. Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. Nano Lett. 15, 3945–3952 (2015). PubMed

Wu T.-J. et al.. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat. Nanotechnol. 8, 682–689 (2013). PubMed PMC

Simpson D. A. et al.. In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. Biomed. Opt. Express 5, 1250–1261 (2014). PubMed PMC

Mochalin V. N., Shenderova O., Ho D. & Gogotsi Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2011). PubMed

Řehoř I. et al.. In Carbon Nanomaterials for Biomedical Applications (eds Zhang M., Naik R. R. & Dai L.) 5, 319–361 (Springer International Publishing, 2016).

Vlasov I. I. et al.. Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9, 54–58 (2013). PubMed

Barry J. F. et al.. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. 113, 14133–14138 (2016). PubMed PMC

Zhang H. et al.. Silicon-Vacancy Color Centers in Nanodiamonds: Cathodoluminescence Imaging Markers in the Near Infrared. Small 10, 1908–1913 (2014). PubMed

Perunicic V. S., Hall L. T., Simpson D. A., Hill C. D. & Hollenberg L. C. L. Towards single-molecule NMR detection and spectroscopy using single spins in diamond. Phys. Rev. B 89, 054432 (2014).

Ge Z., Li Q. & Wang Y. Free Energy Calculation of Nanodiamond-Membrane Association—The Effect of Shape and Surface Functionalization. J. Chem. Theory Comput. 10, 2751–2758 (2014). PubMed

Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Phys. Rev. E 69, 031903 (2004). PubMed

Deserno M. & Gelbart W. M. Adhesion and Wrapping in Colloid−Vesicle Complexes. J. Phys. Chem. B 106, 5543–5552 (2002).

Ruiz-Herrero T., Velasco E. & Hagan M. F. Mechanisms of Budding of Nanoscale Particles through Lipid Bilayers. J. Phys. Chem. B 116, 9595–9603 (2012). PubMed PMC

Yi X., Shi X. & Gao H. Cellular Uptake of Elastic Nanoparticles. Phys. Rev. Lett. 107, 098101 (2011). PubMed

Deserno M. Fluid lipid membranes: From differential geometry to curvature stresses. Chem. Phys. Lipids 185, 11–45 (2015). PubMed

Lipowsky R. Coupling of bending and stretching deformations in vesicle membranes. Adv. Colloid Interface Sci. 208, 14–24 (2014). PubMed

Bahrami A. H. et al.. Wrapping of nanoparticles by membranes. Adv. Colloid Interface Sci. 208, 214–224 (2014). PubMed

Agudo-Canalejo J. & Lipowsky R. Critical Particle Sizes for the Engulfment of Nanoparticles by Membranes and Vesicles with Bilayer Asymmetry. ACS Nano 9, 3704–3720 (2015). PubMed

Seifert U. & Lipowsky R. Adhesion of vesicles. Phys. Rev. A 42, 4768 (1990). PubMed

Cao S., Wei G. & Chen J. Z. Y. Transformation of an oblate-shaped vesicle induced by an adhering spherical particle. Phys. Rev. E 84, 050201(R) (2011). PubMed

Lipowsky R. et al.. Vesicles in contact with nanoparticles and colloids. EPL Europhys. Lett. 43(2), 219–225 (1998).

Doherty G. J. & McMahon H. T. Mechanisms of Endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009). PubMed

Mercer J. & Helenius A. Vaccinia, Virus Uses Macropinocytosis and Apoptotic Mimicry to Enter Host Cells. Science 320, 531–535 (2008). PubMed

Dasgupta S., Auth T. & Gompper G. Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Lett. 14, 687–693 (2014). PubMed

Gao H. Probing mechanical principles of cell–nanomaterial interactions. J. Mech. Phys. Solids 62, 312–339 (2014).

Ding H. & Ma Y. Theoretical and computational investigations of nanoparticle–biomembrane interactions in cellular delivery. Small 11, 1055–1071 (2015). PubMed

Chu Z. et al.. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci. Rep. 4, 4495 (2014). PubMed PMC

Havlik J. et al.. Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5, 3208–3211 (2013). PubMed

Stursa J. et al.. Mass production of fluorescent nanodiamonds with a narrow emission intensity distribution. Carbon 96, 812–818 (2016).

Hong C., Tieleman D. P. & Wang Y. Microsecond Molecular Dynamics Simulations of Lipid Mixing. Langmuir 30, 11993–12001 (2014). PubMed PMC

Hub J. S., de Groot B. L. & van der Spoel D. g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem. Theory Comput. 6, 3713–3720 (2010).

Lipowsky R. & Sackmann E. Structure and Dynamics of Membranes, t Edition I. From Cells to Vesicles/II. Generic and Specific Interactions. (Elsevier, 1995).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...