Anchored but not internalized: shape dependent endocytosis of nanodiamond
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28406172
PubMed Central
PMC5390292
DOI
10.1038/srep46462
PII: srep46462
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- buněčná membrána chemie MeSH
- buňky Hep G2 MeSH
- endocytóza MeSH
- HeLa buňky MeSH
- lidé MeSH
- nanodiamanty chemie MeSH
- simulace molekulární dynamiky MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nanodiamanty MeSH
Nanoparticle-cell interactions begin with the cellular uptake of the nanoparticles, a process that eventually determines their cellular fate. In the present work, we show that the morphological features of nanodiamonds (NDs) affect both the anchoring and internalization stages of their endocytosis. While a prickly ND (with sharp edges/corners) has no trouble of anchoring onto the plasma membrane, it suffers from difficult internalization afterwards. In comparison, the internalization of a round ND (obtained by selective etching of the prickly ND) is not limited by its lower anchoring amount and presents a much higher endocytosis amount. Molecular dynamics simulation and continuum modelling results suggest that the observed difference in the anchoring of round and prickly NDs likely results from the reduced contact surface area with the cell membrane of the former, while the energy penalty associated with membrane curvature generation, which is lower for a round ND, may explain its higher probability of the subsequent internalization.
Department of Physics The Chinese University of Hong Kong Shatin New Territory Hong Kong
The Chinese University of Hong Kong Shenzhen Research Institute Shenzhen China
University of Chemistry and Technology Prague Technicka 5 166 28 Prague 6 Czech Republic
Zobrazit více v PubMed
Canton I. & Battaglia G. Endocytosis at the nanoscale. Chem. Soc. Rev. 41, 2718–2739 (2012). PubMed
Albanese A., Tang P. S. & Chan W. C. W. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012). PubMed
Duan X. & Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9, 1521–1532 (2013). PubMed
Vácha R., Martinez-Veracoechea F. J. & Frenkel D. Receptor-Mediated Endocytosis of Nanoparticles of Various Shapes. Nano Lett. 11, 5391–5395 (2011). PubMed
Nel A. E. et al.. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009). PubMed
Verma A. & Stellacci F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small 6, 12–21 (2010). PubMed
Monopoli M. P., Åberg C., Salvati A. & Dawson K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012). PubMed
Champion J. A. & Mitragotri S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 103, 4930–4934 (2006). PubMed PMC
Bahrami A. H. Orientational changes and impaired internalization of ellipsoidal nanoparticles by vesicle membranes. Soft Matter 9, 8642–8646 (2013).
Qiu Y. et al.. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31, 7606–7619 (2010). PubMed
Sharma G. et al.. Polymer particle shape independently influences binding and internalization by macrophages. J. Controlled Release 147, 408–412 (2010). PubMed PMC
Barua S. et al.. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Natl. Acad. Sci. 110, 3270–3275 (2013). PubMed PMC
Zhang X.-Q. et al.. Multimodal Nanodiamond Drug Delivery Carriers for Selective Targeting, Imaging, and Enhanced Chemotherapeutic Efficacy. Adv. Mater. 23, 4770–4775 (2011). PubMed
Chow E. K. et al.. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011). PubMed
McGuinness L. P. et al.. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358–363 (2011). PubMed
Tzeng Y.-K. et al.. Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. Nano Lett. 15, 3945–3952 (2015). PubMed
Wu T.-J. et al.. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat. Nanotechnol. 8, 682–689 (2013). PubMed PMC
Simpson D. A. et al.. In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. Biomed. Opt. Express 5, 1250–1261 (2014). PubMed PMC
Mochalin V. N., Shenderova O., Ho D. & Gogotsi Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2011). PubMed
Řehoř I. et al.. In Carbon Nanomaterials for Biomedical Applications (eds Zhang M., Naik R. R. & Dai L.) 5, 319–361 (Springer International Publishing, 2016).
Vlasov I. I. et al.. Molecular-sized fluorescent nanodiamonds. Nat. Nanotechnol. 9, 54–58 (2013). PubMed
Barry J. F. et al.. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. 113, 14133–14138 (2016). PubMed PMC
Zhang H. et al.. Silicon-Vacancy Color Centers in Nanodiamonds: Cathodoluminescence Imaging Markers in the Near Infrared. Small 10, 1908–1913 (2014). PubMed
Perunicic V. S., Hall L. T., Simpson D. A., Hill C. D. & Hollenberg L. C. L. Towards single-molecule NMR detection and spectroscopy using single spins in diamond. Phys. Rev. B 89, 054432 (2014).
Ge Z., Li Q. & Wang Y. Free Energy Calculation of Nanodiamond-Membrane Association—The Effect of Shape and Surface Functionalization. J. Chem. Theory Comput. 10, 2751–2758 (2014). PubMed
Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Phys. Rev. E 69, 031903 (2004). PubMed
Deserno M. & Gelbart W. M. Adhesion and Wrapping in Colloid−Vesicle Complexes. J. Phys. Chem. B 106, 5543–5552 (2002).
Ruiz-Herrero T., Velasco E. & Hagan M. F. Mechanisms of Budding of Nanoscale Particles through Lipid Bilayers. J. Phys. Chem. B 116, 9595–9603 (2012). PubMed PMC
Yi X., Shi X. & Gao H. Cellular Uptake of Elastic Nanoparticles. Phys. Rev. Lett. 107, 098101 (2011). PubMed
Deserno M. Fluid lipid membranes: From differential geometry to curvature stresses. Chem. Phys. Lipids 185, 11–45 (2015). PubMed
Lipowsky R. Coupling of bending and stretching deformations in vesicle membranes. Adv. Colloid Interface Sci. 208, 14–24 (2014). PubMed
Bahrami A. H. et al.. Wrapping of nanoparticles by membranes. Adv. Colloid Interface Sci. 208, 214–224 (2014). PubMed
Agudo-Canalejo J. & Lipowsky R. Critical Particle Sizes for the Engulfment of Nanoparticles by Membranes and Vesicles with Bilayer Asymmetry. ACS Nano 9, 3704–3720 (2015). PubMed
Seifert U. & Lipowsky R. Adhesion of vesicles. Phys. Rev. A 42, 4768 (1990). PubMed
Cao S., Wei G. & Chen J. Z. Y. Transformation of an oblate-shaped vesicle induced by an adhering spherical particle. Phys. Rev. E 84, 050201(R) (2011). PubMed
Lipowsky R. et al.. Vesicles in contact with nanoparticles and colloids. EPL Europhys. Lett. 43(2), 219–225 (1998).
Doherty G. J. & McMahon H. T. Mechanisms of Endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009). PubMed
Mercer J. & Helenius A. Vaccinia, Virus Uses Macropinocytosis and Apoptotic Mimicry to Enter Host Cells. Science 320, 531–535 (2008). PubMed
Dasgupta S., Auth T. & Gompper G. Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Lett. 14, 687–693 (2014). PubMed
Gao H. Probing mechanical principles of cell–nanomaterial interactions. J. Mech. Phys. Solids 62, 312–339 (2014).
Ding H. & Ma Y. Theoretical and computational investigations of nanoparticle–biomembrane interactions in cellular delivery. Small 11, 1055–1071 (2015). PubMed
Chu Z. et al.. Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci. Rep. 4, 4495 (2014). PubMed PMC
Havlik J. et al.. Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5, 3208–3211 (2013). PubMed
Stursa J. et al.. Mass production of fluorescent nanodiamonds with a narrow emission intensity distribution. Carbon 96, 812–818 (2016).
Hong C., Tieleman D. P. & Wang Y. Microsecond Molecular Dynamics Simulations of Lipid Mixing. Langmuir 30, 11993–12001 (2014). PubMed PMC
Hub J. S., de Groot B. L. & van der Spoel D. g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem. Theory Comput. 6, 3713–3720 (2010).
Lipowsky R. & Sackmann E. Structure and Dynamics of Membranes, t Edition I. From Cells to Vesicles/II. Generic and Specific Interactions. (Elsevier, 1995).