Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells

. 2018 Apr ; 22 (4) : 2240-2251. [epub] 20180125

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29369499

Melanoma arises from neural crest-derived melanocytes which reside mostly in the skin in an adult organism. Epithelial-mesenchymal transition (EMT) is a tumorigenic programme through which cells acquire mesenchymal, more pro-oncogenic phenotype. The reversible phenotype switching is an event still not completely understood in melanoma. The EMT features and increased invasiveness are associated with lower levels of the pivotal lineage identity maintaining and melanoma-specific transcription factor MITF (microphthalmia-associated transcription factor), whereas increased proliferation is linked to higher MITF levels. However, the precise role of MITF in phenotype switching is still loosely characterized. To exclude the changes occurring upstream of MITF during MITF regulation in vivo, we employed a model whereby MITF expression was inducibly regulated by shRNA in melanoma cell lines. We found that the decrease in MITF caused only moderate attenuation of proliferation of the whole cell line population. Proliferation was decreased in five of 15 isolated clones, in three of them profoundly. Reduction in MITF levels alone did not generally produce EMT-like characteristics. The stem cell marker levels also did not change appreciably, only a sharp increase in SOX2 accompanied MITF down-regulation. Oppositely, the downstream differentiation markers and the MITF transcriptional targets melastatin and tyrosinase were profoundly decreased, as well as the downstream target livin. Surprisingly, after the MITF decline, invasiveness was not appreciably affected, independently of proliferation. The results suggest that low levels of MITF may still maintain relatively high proliferation and might reflect, rather than cause, the EMT-like changes occurring in melanoma.

Zobrazit více v PubMed

Davies H, Bignell GR, Cox C, PubMed

Wellbrock C, Rana S, Paterson H, PubMed PMC

Obenauf AC, Zou Y, Ji AL, PubMed PMC

Roesch A. Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK pathway inhibition in melanoma. Oncogene. 2015; 34: 2951–7. PubMed

Shannan B, Perego M, Somasundaram R, PubMed

Tulchinsky E, Pringle JH, Caramel J, PubMed PMC

Roesch A, Paschen A, Landsberg J, PubMed

Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013; 501: 328–37. PubMed PMC

Jolly MK, Boareto M, Huang B, PubMed PMC

Garraway LA, Widlund HR, Rubin MA, PubMed

McGill GG, Horstmann M, Widlund HR, PubMed

Dynek JN, Chan SM, Liu J, PubMed

Dar AA, Majid S, Bezrookove V, PubMed PMC

Carreira S, Goodall J, Denat L, PubMed PMC

Goodall J, Carreira S, Denat L, PubMed

Cook AL, Sturm RA. POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis. Pigment Cell Melanoma Res. 2008; 21: 611–26. PubMed

Pinner S, Jordan P, Sharrock K, PubMed PMC

Hoek KS, Goding CR. Cancer stem cells versus phenotype‐switching in melanoma. Pigment Cell Melanoma Res. 2010; 23: 746–59. PubMed

Thurber AE, Douglas G, Sturm EC, PubMed PMC

Javelaud D, Alexaki VI, Pierrat MJ, PubMed

Roesch A, Fukunaga‐Kalabis M, Schmidt EC, PubMed PMC

Sensi M, Catani M, Castellano G, PubMed

Quintana E, Shackleton M, Sabel MS, PubMed PMC

Quintana E, Shackleton M, Foster HR, PubMed PMC

Fang D, Nguyen TK, Leishear K, PubMed

Parmiani G. Melanoma cancer stem cells: markers and functions. Cancers. 2016; 8: 34. PubMed PMC

Ondrusova L, Vachtenheim J, Reda J, PubMed PMC

Wiederschain D, Wee S, Chen L, PubMed

Vachtenheim J, Ondrusova L, Borovansky J. SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia‐associated transcription factor in melanoma cells. Biochem Biophys Res Commun. 2010; 392: 454–9. PubMed

Hartman ML, Czyz M. Pro‐survival role of MITF in melanoma. J Invest Dermatol. 2015; 135: 352–8. PubMed

Caramel J, Papadogeorgakis E, Hill L, PubMed

Vandamme N, Berx G. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity. Front Oncol. 2014; 4: 352. PubMed PMC

Cheli Y, Giuliano S, Botton T, PubMed

Santini R, Pietrobono S, Pandolfi S, PubMed PMC

Vachtenheim J, Borovansky J. “Transcription physiology” of pigment formation in melanocytes: central role of MITF. Exp Dermatol. 2010; 19: 617–27. PubMed

Miller AJ, Du J, Rowan S, PubMed

Denecker G, Vandamme N, Akay O, PubMed PMC

Kim JE, Leung E, Baguley BC, PubMed PMC

Shirley SH, Greene VR, Duncan LM, PubMed PMC

Arozarena I, Bischof H, Gilby D, PubMed PMC

Wawrzyniak JA, Bianchi‐Smiraglia A, Bshara W, PubMed PMC

Bianchi‐Smiraglia A, Bagati A, Fink EE, PubMed PMC

Krauthammer M, Kong Y, Ha BH, PubMed PMC

Falletta P, Sanchez‐Del‐Campo L, Chauhan J, PubMed PMC

Vachtenheim J, Ondrusova L. Microphthalmia‐associated transcription factor expression levels in melanoma cells contribute to cell invasion and proliferation. Exp Dermatol. 2015; 24: 481–4. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...