Widespread Expression of Hedgehog Pathway Components in a Large Panel of Human Tumor Cells and Inhibition of Tumor Growth by GANT61: Implications for Cancer Therapy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PROGRESQ25
Univerzita Karlova v Praze
PubMed
30201866
PubMed Central
PMC6163708
DOI
10.3390/ijms19092682
PII: ijms19092682
Knihovny.cz E-zdroje
- Klíčová slova
- GANT61, GLI, Hedgehog, apoptosis, tumor cell lines,
- MeSH
- HeLa buňky MeSH
- jaderné proteiny metabolismus MeSH
- Jurkat buňky MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie metabolismus MeSH
- progrese nemoci MeSH
- proliferace buněk účinky léků MeSH
- protein Gli1 metabolismus MeSH
- protein Gli2 s motivem zinkových prstů metabolismus MeSH
- proteiny hedgehog metabolismus MeSH
- pyridiny farmakologie MeSH
- pyrimidiny farmakologie MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- signální transdukce účinky léků MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- GANT 61 MeSH Prohlížeč
- GLI1 protein, human MeSH Prohlížeč
- GLI2 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- protein Gli1 MeSH
- protein Gli2 s motivem zinkových prstů MeSH
- proteiny hedgehog MeSH
- pyridiny MeSH
- pyrimidiny MeSH
The sonic Hedgehog/GLI signaling pathway (HH) is critical for maintaining tissue polarity in development and contributes to tumor stemness. Transcription factors GLI1⁻3 are the downstream effectors of HH and activate oncogenic targets. To explore the completeness of the expression of HH components in tumor cells, we performed a screen for all HH proteins in a wide spectrum of 56 tumor cell lines of various origin using Western blot analysis. Generally, all HH proteins were expressed. Important factors GLI1 and GLI2 were always expressed, only exceptionally one of them was lowered, suggesting the functionality of HH in all tumors tested. We determined the effect of a GLI inhibitor GANT61 on proliferation in 16 chosen cell lines. More than half of tumor cells were sensitive to GANT61 to various extents. GANT61 killed the sensitive cells through apoptosis. The inhibition of reporter activity containing 12xGLI consensus sites by GANT61 and cyclopamine roughly correlated with cell proliferation influenced by GANT61. Our results recognize the sensitivity of tumor cell types to GANT61 in cell culture and support a critical role for GLI factors in tumor progression through restraining apoptosis. The use of GANT61 in combined targeted therapy of sensitive tumors, such as melanomas, seems to be immensely helpful.
Zobrazit více v PubMed
Cohen M.M., Jr. The hedgehog signaling network. Am. J. Med. Genet. A. 2003;123A:5–28. doi: 10.1002/ajmg.a.20495. PubMed DOI
Robbins D.J., Fei D.L., Riobo N.A. The Hedgehog signal transduction network. Sci. Signal. 2012;5:re6. doi: 10.1126/scisignal.2002906. PubMed DOI PMC
Ryan K.E., Chiang C. Hedgehog secretion and signal transduction in vertebrates. J. Biol. Chem. 2012;287:17905–17913. doi: 10.1074/jbc.R112.356006. PubMed DOI PMC
Berman D.M., Karhadkar S.S., Hallahan A.R., Pritchard J.I., Eberhart C.G., Watkins D.N., Chen J.K., Cooper M.K., Taipale J., Olson J.M., et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 2002;297:1559–1561. doi: 10.1126/science.1073733. PubMed DOI
Bar E.E., Chaudhry A., Farah M.H., Eberhart C.G. Hedgehog signaling promotes medulloblastoma survival via Bc/II. Am. J. Pathol. 2007;170:347–355. doi: 10.2353/ajpath.2007.060066. PubMed DOI PMC
Teglund S., Toftgard R. Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim. Biophys. Acta. 2010;1805:181–208. doi: 10.1016/j.bbcan.2010.01.003. PubMed DOI
Li C., Chi S., Xie J. Hedgehog signaling in skin cancers. Cell Signal. 2011;23:1235–1243. doi: 10.1016/j.cellsig.2011.03.002. PubMed DOI PMC
Archer T.C., Weeraratne S.D., Pomeroy S.L. Hedgehog-GLI Pathway in Medulloblastoma. J. Clin. Oncol. 2012;30:2154–2156. doi: 10.1200/JCO.2011.41.1181. PubMed DOI
Vlckova K., Ondrusova L., Vachtenheim J., Reda J., Dundr P., Zadinova M., Zakova P., Pouckova P. Survivin, a novel target of the Hedgehog/GLI signaling pathway in human tumor cells. Cell Death Dis. 2016;7:e2048. doi: 10.1038/cddis.2015.389. PubMed DOI PMC
Varjosalo M., Taipale J. Hedgehog: Functions and mechanisms. Genes Dev. 2008;22:2454–2472. doi: 10.1101/gad.1693608. PubMed DOI
Li Y., Maitah M.Y., Ahmad A., Kong D., Bao B., Sarkar F.H. Targeting the Hedgehog signaling pathway for cancer therapy. Expert Opin. Ther. Targets. 2012;16:49–66. doi: 10.1517/14728222.2011.617367. PubMed DOI
Atwood S.X., Chang A.L., Oro A.E. Hedgehog pathway inhibition and the race against tumor evolution. J. Cell Biol. 2012;199:193–197. doi: 10.1083/jcb.201207140. PubMed DOI PMC
Amakye D., Jagani Z., Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat. Med. 2013;19:1410–1422. doi: 10.1038/nm.3389. PubMed DOI
Onishi H., Katano M. Hedgehog signaling pathway as a therapeutic target in various types of cancer. Cancer Sci. 2011;102:1756–1760. doi: 10.1111/j.1349-7006.2011.02010.x. PubMed DOI
Shi I., Hashemi S.N., Duan Z.H., Shi T. Aberrant signaling pathways in squamous cell lung carcinoma. Cancer Inform. 2011;10:273–285. doi: 10.4137/CIN.S8283. PubMed DOI PMC
Rodriguez-Blanco J., Schilling N.S., Tokhunts R., Giambelli C., Long J., Liang F.D., Singh S., Black K.E., Wang Z., Galimberti F., et al. The Hedgehog processing pathway is required for NSCLC growth and survival. Oncogene. 2013;32:2335–2345. doi: 10.1038/onc.2012.243. PubMed DOI PMC
Justilien V., Walsh M.P., Ali S.A., Thompson E.A., Murray N.R., Fields A.P. The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate Hedgehog signaling in lung squamous cell carcinoma. Cancer Cell. 2014;25:139–151. doi: 10.1016/j.ccr.2014.01.008. PubMed DOI PMC
Abe Y., Tanaka N. The Hedgehog Signaling Networks in Lung Cancer: The Mechanisms and Roles in Tumor Progression and Implications for Cancer Therapy. BioMed Res. Int. 2016;2016:7969286. doi: 10.1155/2016/7969286. PubMed DOI PMC
Watkins D.N., Berman D.M., Baylin S.B. Hedgehog signaling: Progenitor phenotype in small-cell lung cancer. Cell Cycle. 2003;2:196–198. doi: 10.4161/cc.2.3.378. PubMed DOI
Park K.S., Martelotto L.G., Peifer M., Sos M.L., Karnezis A.N., Mahjoub M.R., Bernard K., Conklin J.F., Szczepny A., Yuan J., et al. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat. Med. 2011;17:1504–1508. doi: 10.1038/nm.2473. PubMed DOI PMC
Lauth M., Toftgard R. Hedgehog signaling and pancreatic tumor development. Adv. Cancer Res. 2011;110:1–17. doi: 10.1016/B978-0-12-386469-7.00001-3. PubMed DOI
Hwang R.F., Moore T.T., Hattersley M.M., Scarpitti M., Yang B., Devereaux E., Ramachandran V., Arumugam T., Ji B., Logsdon C.D., et al. Inhibition of the Hedgehog pathway targets the tumor-associated stroma in pancreatic cancer. Mol. Cancer Res. 2012;10:1147–1157. doi: 10.1158/1541-7786.MCR-12-0022. PubMed DOI PMC
Fu J., Rodova M., Roy S.K., Sharma J., Singh K.P., Srivastava R.K., Shankar S. GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Lett. 2013;330:22–32. doi: 10.1016/j.canlet.2012.11.018. PubMed DOI PMC
Wang F., Ma L., Zhang Z., Liu X., Gao H., Zhuang Y., Yang P., Kornmann M., Tian X., Yang Y. Hedgehog signaling regulates epithelial-mesenchymal transition in pancreatic cancer stem-like cells. J. Cancer. 2016;7:408–417. doi: 10.7150/jca.13305. PubMed DOI PMC
Xu Y., An Y., Wang X., Zha W., Li X. Inhibition of the Hedgehog pathway induces autophagy in pancreatic ductal adenocarcinoma cells. Oncol. Rep. 2014;31:707–712. doi: 10.3892/or.2013.2881. PubMed DOI
Xu X., Zhou Y., Xie C., Wei S.M., Gan H., He S., Wang F., Xu L., Lu J., Dai W., et al. Genome-wide screening reveals an EMT molecular network mediated by Sonic Hedgehog-Gli1 signaling in pancreatic cancer cells. PLoS ONE. 2012;7:e43119. doi: 10.1371/journal.pone.0043119. PubMed DOI PMC
Stecca B., Mas C., Clement V., Zbinden M., Correa R., Piguet V., Beermann F., Ruiz I.A. Melanomas require Hedgehog-Gli signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl. Acad. Sci. USA. 2007;104:5895–5900. doi: 10.1073/pnas.0700776104. PubMed DOI PMC
Alexaki V.I., Javelaud D., Van Kempen L.C., Mohammad K.S., Dennler S., Luciani F., Hoek K.S., Juarez P., Goydos J.S., Fournier P.J., et al. GLI2-mediated melanoma invasion and metastasis. J. Natl. Cancer Inst. 2010;102:1148–1159. doi: 10.1093/jnci/djq257. PubMed DOI PMC
Vlckova K., Reda J., Ondrusova L., Krayem M., Ghanem G., Vachtenheim J. GLI inhibitor GANT61 kills melanoma cells and acts in synergy with obatoclax. Int. J. Oncol. 2016;49:953–960. doi: 10.3892/ijo.2016.3596. PubMed DOI
Ok C.Y., Singh R.R., Vega F. Aberrant activation of the Hedgehog signaling pathway in malignant hematological neoplasms. Am. J. Pathol. 2012;180:2–11. doi: 10.1016/j.ajpath.2011.09.009. PubMed DOI PMC
Fukushima N., Minami Y., Kakiuchi S., Kuwatsuka Y., Hayakawa F., Jamieson C., Kiyoi H., Naoe T. Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells. Cancer Sci. 2016;107:1422–1429. doi: 10.1111/cas.13019. PubMed DOI PMC
Kakiuchi S., Minami Y., Miyata Y., Mizutani Y., Goto H., Kawamoto S., Yakushijin K., Kurata K., Matsuoka H., Minami H. NANOG expression as a responsive biomarker during treatment with Hedgehog signal inhibitor in acute myeloid leukemia. Int. J. Mol. Sci. 2017;18:486. doi: 10.3390/ijms18030486. PubMed DOI PMC
Aberger F., Hutterer E., Sternberg C., del Burgo P.J., Hartmann T.N. Acute myeloid leukemia—Strategies and challenges for targeting oncogenic Hedgehog/GLI signaling. Cell Commun. Signal. 2017;15:8. doi: 10.1186/s12964-017-0163-4. PubMed DOI PMC
Burns M.A., Liao Z.W., Yamagata N., Pouliot G.P., Stevenson K.E., Neuberg D.S., Thorner A.R., Ducar M., Silverman E.A., Hunger S.P., et al. Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia. Leukemia. 2018 doi: 10.1038/s41375-018-0097-x. PubMed DOI PMC
Fei D.L., Sanchez-Mejias A., Wang Z., Flaveny C., Long J., Singh S., Rodriguez-Blanco J., Tokhunts R., Giambelli C., Briegel K.J., et al. Hedgehog signaling regulates bladder cancer growth and tumorigenicity. Cancer Res. 2012;72:4449–4458. doi: 10.1158/0008-5472.CAN-11-4123. PubMed DOI PMC
Sanchez P., Clement V., Altaba A. Therapeutic targeting of the Hedgehog-GLI pathway in prostate cancer. Cancer Res. 2005;65:2990–2992. doi: 10.1158/0008-5472.CAN-05-0439. PubMed DOI
Thiyagarajan S., Bhatia N., Reagan-Shaw S., Cozma D., Thomas-Tikhonenko A., Ahmad N., Spiegelman V.S. Role of GLI2 transcription factor in growth and tumorigenicity of prostate cells. Cancer Res. 2007;67:10642–10646. doi: 10.1158/0008-5472.CAN-07-2015. PubMed DOI PMC
Li N., Truong S., Nouri M., Moore J., Al Nakouzi N., Lubik A.A., Buttyan R. Non-canonical activation of Hedgehog in prostate cancer cells mediated by the interaction of transcriptionally active androgen receptor proteins with Gli3. Oncogene. 2018;37:2313–2325. doi: 10.1038/s41388-017-0098-7. PubMed DOI PMC
Yang H., Hu L., Liu Z., Qin Y., Li R., Zhang G., Zhao B., Bi C., Lei Y., Bai Y. Inhibition of Gli1- mediated prostate cancer cell proliferation by inhibiting the mTOR/S6K1 signaling pathway. Oncol. Lett. 2017;14:7970–7976. doi: 10.3892/ol.2017.7254. PubMed DOI PMC
Clement V., Sanchez P., de Tribolet N., Radovanovic I., Altaba A. Hedgehog-Gli1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol. 2007;17:165–172. doi: 10.1016/j.cub.2006.11.033. PubMed DOI PMC
Takezaki T., Hide T., Takanaga H., Nakamura H., Kuratsu J., Kondo T. Essential role of the Hedgehog signaling pathway in human glioma-initiating cells. Cancer Sci. 2011;102:1306–1312. doi: 10.1111/j.1349-7006.2011.01943.x. PubMed DOI PMC
Nagao-Kitamoto H., Nagata M., Nagano S., Kitamoto S., Ishidou Y., Yamamoto T., Nakamura S., Tsuru A., Abematsu M., Fujimoto Y., et al. GLI2 is a novel therapeutic target for metastasis of osteosarcoma. Int. J. Cancer. 2015;136:1276–1284. doi: 10.1002/ijc.29107. PubMed DOI
Yao Z., Han L., Chen Y., He F., Sun B., Kamar S., Zhang Y., Yang Y., Wang C., Yang Z. Hedgehog signalling in the tumourigenesis and metastasis of osteosarcoma, and its potential value in the clinical therapy of osteosarcoma. Cell Death Dis. 2018;9:701. doi: 10.1038/s41419-018-0647-1. PubMed DOI PMC
Satheesha S., Manzella G., Bovay A., Casanova E.A., Bode P.K., Belle R., Feuchtgruber S., Jaaks P., Dogan N., Koscielniak E., et al. Targeting Hedgehog signaling reduces self-renewal in embryonal rhabdomyosarcoma. Oncogene. 2016;35:2020–2030. doi: 10.1038/onc.2015.267. PubMed DOI PMC
Xu L., Wang X., Wan J., Li T., Gong X., Zhang K., Yi L., Xiang Z., Xu M., Cui H. Sonic Hedgehog pathway is essential for neuroblastoma cell proliferation and tumor growth. Mol. Cell Biochem. 2012;364:235–241. doi: 10.1007/s11010-011-1222-6. PubMed DOI
Szkandera J., Kiesslich T., Haybaeck J., Gerger A., Pichler M. Hedgehog signaling pathway in ovarian cancer. Int. J. Mol. Sci. 2013;14:1179–1196. doi: 10.3390/ijms14011179. PubMed DOI PMC
Levanat S., Sabol M., Musani V., Ozretic P., Trnski D. Hedgehog signaling pathway as genetic and epigenetic target in ovarian tumors. Curr. Pharm. Des. 2017;23:73–94. doi: 10.2174/1381612822666161006154705. PubMed DOI
Kim Y., Yoon J.W., Xiao X., Dean N.M., Monia B.P., Marcusson E.G. Selective down-regulation of glioma-associated oncogene 2 inhibits the proliferation of hepatocellular carcinoma cells. Cancer Res. 2007;6:73583–73593. doi: 10.1158/0008-5472.CAN-06-3040. PubMed DOI
Mazumdar T., Devecchio J., Shi T., Jones J., Agyeman A., Houghton J.A. Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res. 2011;71:1092–1102. doi: 10.1158/0008-5472.CAN-10-2315. PubMed DOI PMC
Regan J.L., Schumacher D., Staudte S., Steffen A., Haybaeck J., Keilholz U., Schweiger C., Golob-Schwarzl N., Mumberg D., Henderson D., et al. Non-canonical Hedgehog signaling is a positive regulator of the WNT pathway and is required for the survival of colon cancer stem cells. Cell Rep. 2017;21:2813–2828. doi: 10.1016/j.celrep.2017.11.025. PubMed DOI
Jeng K.S., Jeng C.J., Sheen I.S., Wu S.H., Lu S.J., Wang C.H., Chang C.F. Glioma-associated oncogene homolog inhibitors have the potential of suppressing cancer stem cells of breast cancer. Int. J. Mol. Sci. 2018;19:1375. doi: 10.3390/ijms19051375. PubMed DOI PMC
Das S., Tucker J.A., Khullar S., Samant R.S., Shevde L.A. Hedgehog signaling in tumor cells facilitates osteoblast-enhanced osteolytic metastases. PLoS ONE. 2012;7:e34374. doi: 10.1371/journal.pone.0034374. PubMed DOI PMC
Jagani Z., Mora-Blanco E.L., Sansam C.G., McKenna E.S., Wilson B., Chen D., Klekota J., Tamayo P., Nguyen P.T., Tolstorukov M., et al. Loss of the tumor suppressor SNF5 leads to aberrant activation of the Hedgehog-Gli pathway. Nat. Med. 2010;16:1429–1433. doi: 10.1038/nm.2251. PubMed DOI PMC
Riobo N.A., Lu K., Ai X., Haines G.M., Emerson C.P., Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc. Natl. Acad. Sci. USA. 2006;103:4505–4510. doi: 10.1073/pnas.0504337103. PubMed DOI PMC
Lauth M., Toftgard R. Non-canonical activation of GLI transcription factors: Implications for targeted anti- cancer therapy. Cell Cycle. 2007;6:2458–2463. doi: 10.4161/cc.6.20.4808. PubMed DOI
Shevde L.A., Samant R.S. Nonclassical Hedgehog-Gli signaling and its clinical implications. Int. J. Cancer. 2014;135:1–6. doi: 10.1002/ijc.28424. PubMed DOI
Po A., Silvano M., Miele E., Capalbo C., Eramo A., Salvati V., Todaro M., Besharat Z.M., Catanzaro G., Cucchi D., et al. Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma. Oncogene. 2017;36:4641–4652. doi: 10.1038/onc.2017.91. PubMed DOI PMC
Ji Z., Mei F.C., Xie J., Cheng X. Oncogenic KRAS activates Hedgehog signaling pathway in pancreatic cancer cells. J. Biol. Chem. 2007;282:14048–14055. doi: 10.1074/jbc.M611089200. PubMed DOI
Wang Y., Ding Q., Yen C.J., Xia W., Izzo J.G., Lang J.Y., Li C.W., Hsu J.L., Miller S.A., Wang X., et al. The crosstalk of mTOR/S6K1 and Hedgehog pathways. Cancer Cell. 2012;21:374–387. doi: 10.1016/j.ccr.2011.12.028. PubMed DOI PMC
Miyazaki Y., Matsubara S., Ding Q., Tsukasa K., Yoshimitsu M., Kosai K., Takao S. Efficient elimination of pancreatic cancer stem cells by hedgehog/GLI inhibitor GANT61 in combination with mTOR inhibition. Mol. Cancer. 2016;15:49. doi: 10.1186/s12943-016-0534-2. PubMed DOI PMC
Desch P., Asslaber D., Kern D., Schnidar H., Mangelberger D., Alinger B., Stoecher M., Hofbauer S.W., Neureiter D., Tinhofer I., et al. Inhibition of GLI, but not Smoothened, induces apoptosis in chronic lymphocytic leukemia cells. Oncogene. 2010;29:4885–4895. doi: 10.1038/onc.2010.243. PubMed DOI
Wang Y., Han C., Lu L., Magliato S., Wu T. Hedgehog signaling pathway regulates autophagy in human hepatocellular carcinoma cells. Hepatology. 2013;58:995–1010. doi: 10.1002/hep.26394. PubMed DOI PMC
Katoh Y., Katoh M. Hedgehog target genes: Mechanisms of carcinogenesis induced by aberrant Hedgehog signaling activation. Curr. Mol. Med. 2009;9:873–886. doi: 10.2174/156652409789105570. PubMed DOI
Li X., Ma Q., Duan W., Liu H., Xu H., Wu E. Paracrine sonic Hedgehog signaling derived from tumor epithelial cells: A key regulator in the pancreatic tumor microenvironment. Crit. Rev. Eukaryot. Gene Expr. 2012;22:97–108. doi: 10.1615/CritRevEukarGeneExpr.v22.i2.20. PubMed DOI
Lonardo E., Frias-Aldeguer J., Hermann P.C., Heeschen C. Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle. 2012;11:1282–1290. doi: 10.4161/cc.19679. PubMed DOI
Gu J., Saiyin H., Fu D., Li J. Stroma—A double-edged sword in pancreatic cancer: A lesson from targeting stroma in pancreatic cancer with Hedgehog signaling inhibitors. Pancreas. 2018;47:382–389. doi: 10.1097/MPA.0000000000001023. PubMed DOI
Rucki A.A., Foley K., Zhang P., Xiao Q., Kleponis J., Wu A.A., Sharma R., Mo G., Liu A., Van Eyk J., et al. Heterogeneous stromal signaling within the tumor microenvironment controls the metastasis of pancreatic cancer. Cancer Res. 2017;77:41–52. doi: 10.1158/0008-5472.CAN-16-1383. PubMed DOI PMC
Levy C., Khaled M., Fisher D.E. MITF: Master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 2006;12:406–414. doi: 10.1016/j.molmed.2006.07.008. PubMed DOI
Vachtenheim J., Ondrusova L. Microphthalmia-associated transcription factor expression levels in melanoma cells contribute to cell invasion and proliferation. Exp. Dermatol. 2015;24:481–484. doi: 10.1111/exd.12724. PubMed DOI
Santini R., Vinci M.C., Pandolfi S., Penachioni J.Y., Montagnani V., Olivito B., Gattai R., Pimpinelli N., Gerlini G., Borgognoni L., et al. Hedgehog-Gli signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells. 2012;30:1808–1818. doi: 10.1002/stem.1160. PubMed DOI
Vlckova K., Vachtenheim J., Reda J., Horak P., Ondrusova L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J. Cell Mol. Med. 2018;22:2240–2251. doi: 10.1111/jcmm.13506. PubMed DOI PMC