SEVA 4.0: an update of the Standard European Vector Architecture database for advanced analysis and programming of bacterial phenotypes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
101044360
European Research Council - International
PubMed
36420904
PubMed Central
PMC9825617
DOI
10.1093/nar/gkac1059
PII: 6845432
Knihovny.cz E-zdroje
- MeSH
- Bacteria * genetika MeSH
- databáze faktografické * MeSH
- DNA MeSH
- fenotyp MeSH
- genetické vektory MeSH
- klonování DNA MeSH
- plazmidy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
The SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications. In particular, SEVA 4.0 includes (i) a sub-collection of plasmids for easing the composition of multiple DNA segments with MoClo/Golden Gate technology, (ii) vectors for Gram-positive bacteria and yeast and [iii] off-the-shelf constructs with built-in functionalities. A growing collection of plasmids that capture part of the standard-but not its entirety-has been compiled also into the DB and repository as a separate corpus (SEVAsib) because of its value as a resource for constructing and deploying phenotypes of interest. Maintenance and curation of the DB were accompanied by dedicated diffusion and communication channels that make the SEVA platform a popular resource for genetic analyses, genome editing and bioengineering of a large number of microorganisms.
Department of Experimental Biology Faculty of Science Masaryk University Brno 62500 Czech Republic
School of Computing Newcastle University NE4 5TG UK
Scienseed SL 28020 Madrid Spain
Systems Biology Department Centro Nacional de Biotecnología 28049 Cantoblanco Madrid Spain
Zobrazit více v PubMed
Novick R.P., Clowes R.C., Cohen S.N., Curtiss R. 3rd, Datta N., Falkow S.. Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol. Rev. 1976; 40:168–189. PubMed PMC
Beal J., Goñi-Moreno A., Myers C., Hecht A., de Vicente M.D.C., Parco M., Schmidt M., Timmis K., Baldwin G., Friedrichs S.et al. .. The long journey towards standards for engineering biosystems: are the molecular biology and the biotech communities ready to standardise. EMBO Rep. 2020; 21:e50521. PubMed PMC
Tas H., Amara A., Cueva M.E., Bongaerts N., Calvo-Villamañán A., Hamadache S., Vavitsas K.. Are synthetic biology standards applicable in everyday research practice?. Microb. Biotechnol. 2020; 13:1304–1308. PubMed PMC
Porcar M., Danchin A., de Lorenzo V.. Confidence, tolerance, and allowance in biological engineering: the nuts and bolts of living things. Bioessays. 2015; 37:95–102. PubMed
Shetty R.P., Endy D., Knight T.F.. Engineering biobrick vectors from biobrick parts. J. Biol. Eng. 2008; 2:5. PubMed PMC
Røkke G., Korvald E., Pahr J., Oyås O., Lale R.. BioBrick assembly standards and techniques and associated software tools. Methods Mol. Biol. 2014; 1116:1–24. PubMed
Dong H., Zhang D. Current development in genetic engineering strategies of Bacillus species. Microb. Cell Fact. 2014; 13:63. PubMed PMC
Lee N., Hwang S., Lee Y., Cho S., Palsson B., Cho B.K.. Synthetic biology tools for novel secondary metabolite discovery in streptomyces. J. Microbiol. Biotechnol. 2019; 29:667–686. PubMed
Tas H., Nguyen C.T., Patel R., Kim N.H., Kuhlman T.E.. An integrated system for precise genome modification in Escherichiacoli. PLoS One. 2015; 10:e0136963. PubMed PMC
Silva-Rocha R., Martínez-García E., Calles B., Chavarría M., Arce-Rodríguez A., de Las Heras A., Páez-Espino A.D., Durante-Rodríguez G., Kim J., Nikel P.I.et al. .. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 2013; 41:D666–D675. PubMed PMC
Martinez-Garcia E., Aparicio T., Goni-Moreno A., Fraile S., de Lorenzo V.. SEVA 2.0: an update of the standard european vector architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Res. 2015; 43:D1183–D1189. PubMed PMC
Madsen C., Goñi Moreno A.P, U. P, U. Palchick Z., Roehner N., Atallah C., Bartley B., Choi K., Cox R.S., Gorochowski T.et al. .. Synthetic biology open language (SBOL) version 2.3. J. Integr. Bioinform. 2019; 16:20190025. PubMed PMC
Martínez-García E., Goñi-Moreno A., Bartley B., McLaughlin J., Sánchez-Sampedro L., Pascual Del Pozo H., Prieto Hernández C., Marletta A.S., De Lucrezia D., Sánchez-Fernández G.et al. .. SEVA 3.0: an update of the standard european vector architecture for enabling portability of genetic constructs among diverse bacterial hosts. Nucleic Acids Res. 2020; 48:D1164–D1170. PubMed PMC
Blázquez B., Torres-Bacete J., San Leon D., Kniewel R., Martinez I., Sordon S., Wilczak A., Salgado S., Huszcza E., Popłoński J.et al. .. Golden standard: a complete standard, portable, and interoperative moclo tool for model and non-model bacterial hosts. 2022; bioRxiv doi:20 September 2022, preprint: not peer reviewed10.1101/2022.09.20.508659. PubMed DOI PMC
Wirth N.T., Kozaeva E., Nikel P.I.. Accelerated genome engineering of Pseudomonas putida by I-SceI―mediated recombination and CRISPR-Cas9 counterselection. Microb. Biotech. 2020; 13:233–249. PubMed PMC
Arce-Rodríguez A., Volke D.C., Bense S., Häussler S., Nikel P.I.. Non-invasive, ratiometric determination of intracellular pH in Pseudomonas species using a novel genetically encoded indicator. Microb. Biotech. 2019; 12:799–813. PubMed PMC
Martínez-García E., de Lorenzo V.. Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ. Microbiol. 2011; 13:2702–2716. PubMed
Torres-Bacete J., Luís García J., Nogales J.. A portable library of phosphate-depletion based synthetic promoters for customable and automata control of gene expression in bacteria. Microb. Biotech. 2021; 14:2643–2658. PubMed PMC
Benedetti I., de Lorenzo V., Nikel P.I.. Genetic programming of catalytic Pseudomonasputida biofilms for boosting biodegradation of haloalkanes. Metab. Eng. 2016; 33:109–118. PubMed
Nikel P.I., Benedetti I., Wirth N.T., de Lorenzo V., Calles B.. Standardization of regulatory nodes for engineering heterologous gene expression: a feasibility study. Microb. Biotechnol. 2022; 15:2250–2265. PubMed PMC
Rong M., He B., McAllister W.T., Durbin R.K.. Promoter specificity determinants of T7 RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 1998; 95:515–519. PubMed PMC
Calero P., Volke D.C., Lowe P.T., Gotfredsen C.H., O’Hagan D., Nikel P.I.. A fluoride-responsive genetic circuit enables in vivo biofluorination in engineered Pseudomonas putida. Nat. Commun. 2020; 11:5045. PubMed PMC
Volke D.C., Turlin J., Mol V., Nikel P.I.. Physical decoupling of xyls/Pm regulatory elements and conditional proteolysis enable precise control of gene expression in Pseudomonas putida. Microb. Biotechnol. 2020; 13:222–232. PubMed PMC
Aparicio T., Silbert J., Cepeda S., de Lorenzo V.. Propagation of recombinant genes through complex microbiomes with synthetic mini-RP4 plasmid vectors. Bio Design Res. 2022; 2022:9850305. PubMed PMC
Ceglowski P., Boitsov A., Chai S., Alonso J.C.. Analysis of the stabilization system of pSM19035-derived plasmid pBT233 in Bacillus subtilis. Gene. 1993; 136:1–12. PubMed
García-Gutiérrez C., Aparicio T., Torres-Sánchez L., Martínez-García E., de Lorenzo V., Villar C.J., Lombó F.. Multifunctional SEVA shuttle vectors for actinomycetes and Gram-negative bacteria. Microbiol. Open. 2020; 9:1135–1149. PubMed PMC
Silbert J., Lorenzo V.d., Aparicio T.. Refactoring the conjugation machinery of promiscuous plasmid RP4 into a device for conversion of gram-negative isolates to hfr strains. ACS Synth. Biol. 2021; 10:690–697. PubMed PMC
Cumming A.J., Khananisho D., Harris R., Bayer C.N., Nørholm M.H.H., Jamshidi S., Ilag L.L., Daley D.O.. Antibiotic-efficient genetic cassette for the TEM-1 β-lactamase that improves plasmid performance. ACS Synth. Biol. 2022; 11:241–253. PubMed PMC
Damalas S.G., Batianis C., Martin-Pascual M., de Lorenzo V., Martins Dos Santos V.A.P.. SEVA 3.1: enabling interoperability of DNA assembly among the SEVA, biobricks and type IIS restriction enzyme standards. Microb. Biotechnol. 2020; 13:1793–1806. PubMed PMC
Nielsen A.A., Der B.S., Shin J., Vaidyanathan P., Paralanov V., Strychalski E.A., Ross D., Densmore D., Voigt C.A.. Genetic circuit design automation. Science. 2016; 352:aac7341. PubMed
Tas H., Goñi-Moreno Á., Lorenzo V.. A standardized inverter package borne by broad host range plasmids for genetic circuit design in Gram-negative bacteria. ACS Synth. Biol. 2021; 10:213–217. PubMed
Tas H., Grozinger L., Goñi-Moreno A., de Lorenzo V.. Automated design and implementation of a NOR gate in Pseudomonasputida. Synth. Biol. 2021; 6:ysab024. PubMed PMC
Tas H., Grozinger L., Stoof R., de Lorenzo V., Goñi-Moreno Á.. Contextual dependencies expand the re-usability of genetic inverters. Nat. Commun. 2021; 12:355. PubMed PMC
Tellechea-Luzardo J., Winterhalter C., Widera P., Kozyra J., de Lorenzo V., Krasnogor N.. Linking engineered cells to their digital twins: a version control system for strain engineering. ACS Synth. Biol. 2020; 9:536–545. PubMed
Tellechea-Luzardo J., Hobbs L., Velázquez E., Pelechova L., Woods S., de Lorenzo V., Krasnogor N.. Versioning biological cells for trustworthy cell engineering. Nat. Commun. 2022; 13:765. PubMed PMC
Velázquez E., Al-Ramahi Y., Tellechea-Luzardo J., Krasnogor N., de Lorenzo V.. Targetron-assisted delivery of exogenous DNA sequences into Pseudomonasputida through CRISPR-Aided counterselection. ACS Synth. Biol. 2021; 10:2552–2565. PubMed PMC
Martínez-García E., Aparicio T., Lorenzo V.d., Nikel P.I.. Engineering Gram-negative microbial cell factories using transposon vectors. Methods Mol. Biol. 2017; 1498:273–293. PubMed
Martínez-García E., Aparicio T., de Lorenzo V., Nikel P.I.. New transposon tools tailored for metabolic engineering of gram-negative microbial cell factories. Front. Bioeng Biotechnol. 2014; 2:46. PubMed PMC
Choudhery S., Brown A.J., Akusobi C., Rubin E.J., Sassetti C.M., Ioerger T.R.. Modeling site-specific nucleotide biases affecting himar1 transposon insertion frequencies in tnseq data sets. Msystems. 2021; 6:e0087621. PubMed PMC
Lampe D.J., Akerley B.J., Rubin E.J., Mekalanos J.J., Robertson H.M.. Hyperactive transposase mutants of the himar1 mariner transposon. Proc. Natl. Acad. Sci. U.S.A. 1999; 96:11428–11433. PubMed PMC
van Opijnen T., Bodi K.L., Camilli A.. Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat. Methods. 2009; 6:767–772. PubMed PMC
Morgan R.D., Bhatia T.K., Lovasco L., Davis T.B.. MmeI: a minimal type II restriction-modification system that only modifies one DNA strand for host protection. Nucleic Acids Res. 2008; 36:6558–6570. PubMed PMC
McKenzie T., Hoshino T., Tanaka T., Sueoka N.. The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid. 1986; 15:93–103. PubMed
Horinouchi S., Weisblum B.. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J. Bacteriol. 1982; 150:815–825. PubMed PMC
Biswas I., Jha J.K., Fromm N.. Shuttle expression plasmids for genetic studies in Streptococcus mutans. Microbiology. 2008; 154:2275–2282. PubMed PMC
McLaughlin J.A., Myers C.J., Zundel Z., Mısırlı G., Zhang M., Ofiteru I.D., Goñi-Moreno A., Wipat A.. SynBioHub: a standards-enabled design repository for synthetic biology. ACS Synth. Biol. 2018; 7:682–688. PubMed
Beal J., Nguyen T., Gorochowski T.E., Goñi-Moreno A., Scott-Brown J., McLaughlin J.A., Madsen C., Aleritsch B., Bartley B., Bhakta S.et al. .. Communicating structure and function in synthetic biology diagrams. ACS Synth. Biol. 2019; 8:1818–1825. PubMed PMC
Crowther M., Wipat A., Goñi-Moreno Á.. A network approach to genetic circuit designs. ACS Synth. Biol. 2022; 11:3058–3066. PubMed PMC
Tellechea-Luzardo J., Otero-Muras I., Goñi-Moreno A., Carbonell P.. Fast biofoundries: coping with the challenges of biomanufacturing. Trends Biotechnol. 2022; 40:831–842. PubMed
Kim S.H., Cavaleiro A.M., Rennig M., Nørholm M.H.H.. SEVA linkers: a versatile and automatable DNA backbone exchange standard for synthetic biology. ACS Synth. Biol. 2016; 5:1177–1181. PubMed
Valenzuela-Ortega M., French C.. Joint universal modular plasmids (JUMP): a flexible vector platform for synthetic biology. Synth. Biol. 2021; 6:ysab003. PubMed PMC
Lammens E.-M., Boon M., Grimon D., Briers Y., Lavigne R.. SEVAtile: a standardised DNA assembly method optimised for Pseudomonas. Microb. Biotech. 2022; 15:370–386. PubMed PMC
Schuster L.A., Reisch C.R.. A plasmid toolbox for controlled gene expression across the proteobacteria. Nucleic Acids Res. 2021; 49:7189–7202. PubMed PMC
Geddes B.A., Mendoza-Suárez M.A., Poole P.S.. A bacterial expression vector archive (BEVA) for flexible modular assembly of golden gate-compatible vectors. Front. Microbiol. 2018; 9:3345. PubMed PMC
Falkenberg K.B., Mol V., de la Maza Larrea A.S., Pogrebnyakov I., Nørholm M.H.H., Nielsen A.T., Jensen S.I.. The prouser2.0 toolbox: genetic parts and highly customizable plasmids for synthetic biology in bacillus subtilis. ACS Synth. Biol. 2021; 10:3278–3289. PubMed
Opel F., Siebert N.A., Klatt S., Tüllinghoff A., Hantke J.G., Toepel J., Bühler B., Nürnberg D.J., Klähn S.. Generation of synthetic shuttle vectors enabling modular genetic engineering of cyanobacteria. ACS Synth. Biol. 2022; 11:1758–1771. PubMed
Silva-Rocha R., Pontelli M.C., Furtado G.P., Zaramela L.S., Koide T.. Development of new modular genetic tools for engineering the halophilic archaeon Halobacteriumsalinarum. PLoS One. 2015; 10:e0129215. PubMed PMC
Bayer C.N., Rennig M., Ehrmann A.K., Nørholm M.H.H.. A standardized genome architecture for bacterial synthetic biology (SEGA). Nat. Comm. 2021; 12:5876. PubMed PMC
Elmore J.R., Furches A., Wolff G.N., Gorday K., Guss A.M.. Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonasputida KT2440. Metab. Eng. Comm. 2017; 5:1–8. PubMed PMC
Nora L.C., Gonçales R.A., Martins-Santana L., Ferreira B.H., Rodrigues F., Silva-Rocha R.. Synthetic and minimalist vectors for Agrobacteriumtumefaciens-mediated transformation of fungi. Genet. Mol. Biol. 2019; 42:395–398. PubMed PMC
Verdú C., Sanchez E., Ortega C., Hidalgo A., Berenguer J., Mencía M.. A modular vector toolkit with a tailored set of thermosensors to regulate gene expression in Thermusthermophilus. ACS Omega. 2019; 4:14626–14632. PubMed PMC
Ma X., Liang H., Cui X., Liu Y., Lu H., Ning W., Poon N.Y., Ho B., Zhou K.. A standard for near-scarless plasmid construction using reusable DNA parts. Nat. Comm. 2019; 10:3294. PubMed PMC
Enghiad B., Xue P., Singh N., Boob A.G., Shi C., Petrov V.A., Liu R., Peri S.S., Lane S.T., Gaither E.D.et al. .. PlasmidMaker is a versatile, automated, and high throughput end-to-end platform for plasmid construction. Nat. Commun. 2022; 13:2697. PubMed PMC
De Wannemaeker L., Bervoets I., De Mey M.. Unlocking the bacterial domain for industrial biotechnology applications using universal parts and tools. Biotechnol. Adv. 2022; 60:108028. PubMed
Leggieri P.A., Liu Y., Hayes M., Connors B., Seppälä S., O’Malley M.A., Venturelli O.S.. Integrating systems and synthetic biology to understand and engineer microbiomes. Ann. Rev. Biomed. Eng. 2021; 23:169–201. PubMed PMC